题目内容
过抛物线y2=4x的焦点F作垂直于x轴的直线,交抛物线于A,B两点,则以F为圆心、AB为直径的圆的方程是
______.
∵y2=4x,
∴p=2,F(1,0),
把x=1代入抛物线方程求得y=±2
∴A(1,2),B(1,-2),
∴|AB|=2+2=4
∴所求圆的方程为(x-1)2+y2=4.
故答案为:(x-1)2+y2=4.
∴p=2,F(1,0),
把x=1代入抛物线方程求得y=±2
∴A(1,2),B(1,-2),
∴|AB|=2+2=4
∴所求圆的方程为(x-1)2+y2=4.
故答案为:(x-1)2+y2=4.
练习册系列答案
相关题目
倾斜角为
的直线过抛物线y2=4x的焦点且与抛物线交于A,B两点,则|AB|=( )
π |
4 |
A、
| ||
B、8
| ||
C、16 | ||
D、8 |
过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为( )
A、5 | ||
B、
| ||
C、
| ||
D、
|