题目内容

如图,正方体ABCD-A1B1C1D1中,棱长为2,E、F分别为棱DD1、AB上的点.已知下列命题:
①AC1⊥平面B1EF;
②三角形B1EF在侧面BCC1B1上的正投影是面积为定值2的三角形;
③在平面A1B1C1D1内总存在与平面B1EF平行的直线;
④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关.
其中,假命题有______(写出所有符合要求命题的序号)
对于①A1C⊥平面B1EF,不一定成立,因为A1C⊥平面AC1D,而两个平面面B1EF与面AC1D不一定平行.
对于②△B1EF在侧面BCC1B1上 的正投影是面积为定值的三角形,此是一个正确的结论,因为其投影三角形的一边是棱BB1,而E点在面上的投影到此棱BB1的距离是定值,故正确;
对于③在平面A1B1C1D1内总存在与平面B1EF平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;
对于④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关,此结论不对,与两者都有关系,可代入几个特殊点进行验证,如F与A重合,E与D重合时的二面角与F与B重合,E与D重合时的情况就不一样.故此命题不正确
综上所述假命题是①④
故答案为:①④
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网