题目内容

已知向量
m
=(cosx,-sinx),
n
=(cosx,sinx-2
3
cosx),x∈R
,令f(x)=
m
n

(1)当x∈(0,
π
2
)
时,求f(x)的值域;
(2)已知f(
α
2
)=
2
3
,求cos(2α-
2
3
π)
的值.
分析:(1)由f(x)=
m
n
=cos2x-sinx(sinx-2
3
cosx)
,利用二倍角公式、辅助角公式对三角函数进行化简,然后结合x∈(0,
π
2
)
,及正弦函数的性质可求函数的值域
(2)由已知可得sin(α+
π
6
)=
1
3
,然后由cos(2α-
3
)=cos[2(α+
π
6
)-π],利用诱导公式及二倍角公式可求
解答:解(1)∵f(x)=
m
n
=cos2x-sinx(sinx-2
3
cosx)

=cos2x-sin2x+2
3
sinxcosx

=cos2x+
3
sin2x
f(x)=2sin(2x+
π
6
)

x∈(0,
π
2
)

π
6
<2x+
π
6
6

sin(2x+
π
6
)∈(-
1
2
,1]

∴y=f(x)的值域为(-1,2];   …(7分)
(2)由f(
α
2
)=
2
3
⇒2sin(α+
π
6
)=
2
3
⇒sin(α+
π
6
)=
1
3

cos(2α-
2
3
π)=cos[2(α+
π
6
)-π]=-cos2(α+
π
6
)=-1+2sin2(α+
π
6
)=-
7
9
(14分).
点评:本题主要考查了向量的数量积的坐标表示,正弦函数的性质的应用,二倍角公式、辅助角公式的综合应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网