题目内容
(08年福州质检二文)(12分)
如图,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB. D、E分别为棱C1C、B1C1的中点.
(Ⅰ)求与平面A1C1CA所成角的大小;
(Ⅱ)求二面角B―A1D―A的大小;
(Ⅲ)点F是线段AC的中点,证明:EF⊥平面A1BD.
解析:(Ⅰ)连接A1C.∵A1B1C1-ABC为直三棱柱,∴CC1⊥底面ABC,∴CC1⊥BC.
∵AC⊥CB,∴BC⊥平面A1C1CA. ………………1分
∴为与平面A1C1CA所成角,
.
∴与平面A1C1CA所成角为.………3分
(Ⅱ)分别延长AC,A1D交于G. 过C作CM⊥A1G 于M,连结BM,
∵BC⊥平面ACC1A1,∴CM为BM在平面A1C1CA内的射影,
∴BM⊥A1G,∴∠CMB为二面角B―A1D―A的平面角,………………………5分
平面A1C1CA中,C1C=CA=2,D为C1C的中点,
∴CG=2,DC=1 在直角三角形CDG中,,.……7分
即二面角B―A1D―A的大小为.……………………8分
(Ⅲ)证明:∵A1B1C1―ABC为直三棱柱,∴B1C1//BC,
∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,
∵EF在平面A1C1CA内的射影为C1F,∵F为AC中点,
∴C1F⊥A1D,∴EF⊥A1D.……………………11分
同理可证EF⊥BD,∴EF⊥平面A1BD.……………………12分
解法二:
(Ⅰ)同解法一……………………3分
(Ⅱ)∵A1B1C1―ABC为直三棱柱,C1C=CB=CA=2,
AC⊥CB,D、E分别为C1C、B1C1的中点.
建立如图所示的坐标系得:
C(0,0,0),B(2,0,0),A(0,2,0),
C1(0,0,2), B1(2,0,2), A1(0,2,2),
D(0,0,1), E(1,0,2).………………6分
,设平面A1BD的法向量为,
.…………6分
平面ACC1A1的法向量为=(1,0,0),.………7分
即二面角B―A1D―A的大小为.…………………8分
(Ⅲ)证明:∵F为AC的中点,∴F(0,1,0),.……10分
由(Ⅱ)知平面A1BD的一个法向量为,∴//n . ……11分
EF⊥平面A1BD.…………………………………12分