题目内容

(08年福州质检二文)(12分)

如图,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB. D、E分别为棱C1C、B1C1的中点.

    (Ⅰ)求与平面A1C1CA所成角的大小;

    (Ⅱ)求二面角B―A1D―A的大小;

    (Ⅲ)点F是线段AC的中点,证明:EF⊥平面A1BD.

解析:(Ⅰ)连接A1C.∵A1B1C1-ABC为直三棱柱,∴CC1⊥底面ABC,∴CC1⊥BC.

    ∵AC⊥CB,∴BC⊥平面A1C1CA. ………………1分

    ∴与平面A1C1CA所成角,

.

与平面A1C1CA所成角为.………3分

 

(Ⅱ)分别延长AC,A1D交于G. 过C作CM⊥A1G 于M,连结BM,

    ∵BC⊥平面ACC­1A1,∴CM为BM在平面A1C1CA内的射影,

    ∴BM⊥A1G,∴∠CMB为二面角B―A1D―A的平面角,………………………5分

    平面A1C1CA中,C1C=CA=2,D为C1C的中点,

    ∴CG=2,DC=1 在直角三角形CDG中,.……7分

    即二面角B―A1D―A的大小为.……………………8分

(Ⅲ)证明:∵A1B1C1―ABC为直三棱柱,∴B1C1//BC,

∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,

∵EF在平面A1C1CA内的射影为C1F,∵F为AC中点,

∴C1F⊥A1D,∴EF⊥A1D.……………………11分

同理可证EF⊥BD,∴EF⊥平面A1BD.……………………12分

解法二:

(Ⅰ)同解法一……………………3分

(Ⅱ)∵A1B1C1―ABC为直三棱柱,C1C=CB=CA=2,

AC⊥CB,D、E分别为C1C、B1C1的中点.

建立如图所示的坐标系得:

 

C(0,0,0),B(2,0,0),A(0,2,0),

C1(0,0,2), B1(2,0,2), A­1(0,2,2),

D(0,0,1), E(1,0,2).………………6分

,设平面A1BD的法向量为

  .…………6分

平面ACC1A1­的法向量为=(1,0,0),.………7分

即二面角B―A1D―A的大小为.…………………8分

(Ⅲ)证明:∵F为AC的中点,∴F(0,1,0),.……10分

由(Ⅱ)知平面A1BD的一个法向量为,∴//n . ……11分

EF⊥平面A1BD.…………………………………12分  

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网