题目内容

 图1是一个正方体的表面展开图,MN和PB是两条面对角线,请在图2的正方体中将MN和PB画出来,并就这个正方体解决下列问题

(1) 求证:MN//平面PBD; (2)求证:AQ平面PBD;

(3)求二面角P-DB-M的余弦值。

 

【答案】

(1)只需证MN//BD;(2)只需证。(3)

【解析】

试题分析:画出MN和PB如图所示

(1) 证明:在正方体ABCD-PMQN中

  MN//BD  MN//平面PBD     

(2)证明:在正方体ABCD-PMQN中

   

同理可证 :  

        

(3)解: 建立空间直角坐标系如图所示,设正方体的棱长为1

则 A(1,0,0), Q(0,1,1) , C(0,1,0)

由知平面PBD的一个法向量是

平面MBD的一个法向量是

 二面角P-DB-M的余弦值为 .

考点:正方体的的平面展开图;线面平行的判定定理;线面垂直的判定定理;二面角。

点评:综合法求二面角,往往需要作出平面角,这是几何中一大难点,而用向量法求解二面角无需作出二面角的平面角,只需求出平面的法向量,经过简单运算即可,从而体现了空间向量的巨大作用.二面角的向量求法: ①若AB、CD分别是二面的两个半平面内与棱垂直的异面直线,则二面角的大小就是向量的夹角; ②设分别是二面角的两个面α,β的法向量,则向量的夹角(或其补角)的大小就是二面角的平面角的大小。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网