题目内容

某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米.

(1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面积S△DEF的最大值;

(2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF

连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.

 

【答案】

(1);(2)百米.

【解析】

试题分析:(1)求△DEF 面积S△DEF的最大值,先把△DEF 面积用一个参数表示出来,由于它是直角三角形,故只要求出两直角边DE和EF,直角△ABC中,可得,由于EF‖AB,EF⊥ED,那么有,因此我们可用CE来表示FE,DE.从而把S△DEF表示为CE的函数,然后利用函数的知识(或不等式知识)求出最大值;(2).等边△DEF可由两边EF=ED及确定,我们设,想办法也把与一个参数建立关系式,关键是选取什么为参数,由于等边△DEF位置不确定,我们可选取为参数,建立起的关系.,则中应用正弦定理可建立所需要的等量关系.

试题解析:(1)中,百米,百米.

,可得

,则米,

中,米,C到EF的距离米,

∵C到AB的距离为米,

∴点D到EF的距离为米,

可得

,当且仅当时等号成立,

∴当时,即E为AB中点时,的最大值为.   7分

(2)设正的边长为

,可得

中,

,化简得,     12分

(其中是满足的锐角),

边长最小值为百米.     14分

考点:(1)面积与基本不等式;(2)边长与三角函数的最值.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网