题目内容
对于函数,若存在成立,则称的不动点。如果函数有且只有两个不动点0,2,且
(1)求函数的解析式;
(2)已知各项不为零的数列,求数列通项;
(3)如果数列满足,求证:当时,恒有成立.
(1)(2)(3)证明见解析
解析:
(1)依题意有,化简为 由违达定理, 得
解得 代入表达式,由
得 不止有两个不动点,
(2)由题设得 (*)
且 (**)
由(*)与(**)两式相减得:
解得(舍去)或,由,若这与矛盾,,即{是以-1为首项,-1为公差的等差数列,;
(3)采用反证法,假设则由(1)知
,有
,而当这与假设矛盾,故假设不成立,.
关于本例的第(3)题,我们还可给出直接证法,事实上:
由得<0或
结论成立;
若,此时从而即数列{}在时单调递减,由,可知上成立.
练习册系列答案
相关题目