题目内容

已知函数数学公式,b=f(2),c=f(3),则


  1. A.
    c<a<b
  2. B.
    b<c<a
  3. C.
    c<b<a
  4. D.
    a<b<c
A
分析:由条件可得:函数y=f(x)的图象关于直线x=对称,当 时,f(x)=x+sinx,是增函数,故函数y=f(x)在( ,π )上是减函数,结合图象特征,得到答案.
解答:∵函数y=f(x)满足f(x)=f(π-x),
∴函数y=f(x)的图象关于直线x=对称,
因为当 时,f(x)=x+sinx,
所以f′(x)=1+cosx>0在上恒成立,
所以函数在上是增函数,
所以函数y=f(x)在( ,π )上是减函数.
因为2距离对称轴最近,其次是1,最远的时3,
所以根据函数的有关性质可得:f(3)<f(1)<f(2),即 c<a<b,
故选A.
点评:本题考查正弦函数的单调性,图象的对称性,判断函数y=f(x)的图象关于直线x=对称,且当 时,f(x)=x+sinx 是增函数,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网