题目内容

(2010·北京理,15)已知函数f(x)=2cos2x+sin2x-4cosx.

(1)求f()的值;

(2)求f(x)的最大值和最小值.

 

【答案】

(1)-.(2)当cosx=-1时,f(x)取最大值6;当cosx时,f(x)取最小值-.

【解析】本题考查了三角函数的化简求值及二次函数在区间上的最值.(1)可直接求解,(2)化简后转化为关于cosx的二次函数,求值即可.

(1)f()=2cos+sin2-4cos=-1+-2=-.

(2)f(x)=2(2cos2x-1)+(1-cos2x)-4cosx

=3cos2x-4cosx-1=3(cosx)2xR

因为cosx∈[-1,1],所以当cosx=-1时,f(x)取最大值6;当cosx时,f(x)取最小值-.

 

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网