题目内容
已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=
(Ⅰ)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(Ⅲ)设mn<0,m+n>0,a>0,且f(x)为偶函数,判断F(m)+F(n)能否大于零?请说明理由.
答案:
练习册系列答案
相关题目
题目内容
已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=
(Ⅰ)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(Ⅲ)设mn<0,m+n>0,a>0,且f(x)为偶函数,判断F(m)+F(n)能否大于零?请说明理由.