题目内容

已知函数f(x)=2sinωx•cosωx+2
3
cos2ωx-
3
-1
(其中ω>0),x1、x2是函数y=f(x)的两个不同的零点,且|x1-x2|的最小值为
π
3

(1)求ω的值;
(2)若f(a)=
2
3
,求sin(
6
-4a)
的值.
分析:(1)利用两角和与差的正弦可将f(x)化简为f(x)=2sin(2ωx+
π
3
)-1,由f(x)=0可求得sin(2ωx+
π
3
)=
1
2
,依题意可求得|x1-x2|min=
π
=
π
3
,从而可求得ω的值;
(2)由f(α)=
2
3
,得sin(2α+
π
3
)=
5
6
,利用诱导公式与二倍角的余弦公式可求得sin(
6
-4α)的值.
解答:解:(1)f(x)=sin2ωx+
3
cos2ωx-1=2sin(2ωx+
π
3
)-1,
由f(x)=0得:2sin(2ωx+
π
3
)-1=0,
∴sin(2ωx+
π
3
)=
1
2

∵x1、x2是函数y=f(x)的两个不同的零点,
∴2ωx1+
π
3
=
π
6
+2kπ或2ωx2+
π
3
=
6
+2kπ(k∈Z),
∴2ω|x1-x2|=2kπ或2ω|x1-x2|=2kπ+
3

∴|x1-x2|min=
π
=
π
3

∴ω=1.
(2)f(x)=2sin(2x+
π
3
)-1,
由f(a)=
2
3
,得2sin(2a+
π
3
)-1=
2
3

∴sin(2α+
π
3
)=
5
6

∴sin(
6
-4α)
=-cos[
2
-(
6
-4α)]
=-cos2(2α+
π
3

=2sin2(2α+
π
3
)
-1
=2×
25
36
-1
=
7
18
点评:本题考查两角和与差的正弦,着重考查函数的零点的理解与应用,突出考查三角函数的化简求值,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网