题目内容
如图,椭圆以边长为1的正方形ABCD的对角顶点A,C为焦点,且经过各边的中点,试建立适当的坐标系,求椭圆的方程.
【答案】分析:建立如图所示的坐标系,写出A、C、D、E的坐标,利用椭圆的定义及标准方程的形式,待定系数法求椭圆的方程.
解答:解:如图所示:以点A,C所在直线为x轴,以线段AC的中垂线为y轴,建立平面直角坐标系,
则A(-,0)、C(,0),D(0,),
故CD的中点 E(,),
∵E在椭圆上,由椭圆的定义,
得EA+EC=2a=+
=+=,
∴a=.
又 c=,∴b2=a2-c2=,∴椭圆的方程为:+=1.
点评:本题考查利用椭圆的定义,用待定系数法求椭圆的标准方程的方法,属于中档题.
解答:解:如图所示:以点A,C所在直线为x轴,以线段AC的中垂线为y轴,建立平面直角坐标系,
则A(-,0)、C(,0),D(0,),
故CD的中点 E(,),
∵E在椭圆上,由椭圆的定义,
得EA+EC=2a=+
=+=,
∴a=.
又 c=,∴b2=a2-c2=,∴椭圆的方程为:+=1.
点评:本题考查利用椭圆的定义,用待定系数法求椭圆的标准方程的方法,属于中档题.
练习册系列答案
相关题目