题目内容
设等差数列{an}的前n项和为Sn,已知a3=9,S6=66.
(1)求数列{an}的通项公式an及前n项的和Sn;
(2)设数列{
}的前n项和为Tn,证明:Tn<
.
(1)求数列{an}的通项公式an及前n项的和Sn;
(2)设数列{
1 |
anan+1 |
1 |
4 |
(1)设等差数列{an}的公差为d,
由题意可得
,
解之可得a1=1,d=4,故an=1+4(n-1)=4n-3,
所以Sn=
=
=2n2-n;
(2)由(1)可知
=
=
(
-
),
故Tn=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)=
<
=
,命题得证.
由题意可得
|
解之可得a1=1,d=4,故an=1+4(n-1)=4n-3,
所以Sn=
n(a1+an) |
2 |
n(1+4n-3) |
2 |
(2)由(1)可知
1 |
anan+1 |
1 |
(4n-3)(4n-1) |
1 |
4 |
1 |
4n-3 |
1 |
4n+1 |
故Tn=
1 |
4 |
1 |
5 |
1 |
5 |
1 |
9 |
1 |
4n-3 |
1 |
4n+1 |
=
1 |
4 |
1 |
4n+1 |
n |
4n+1 |
n |
4n |
1 |
4 |
练习册系列答案
相关题目