题目内容

1 |
2 |
1 |
3 |
1 |
4 |
分析:由已知,设g(x)=(f(x)-
)x=x5+ax4+bx3+cx2+dx-1=(x-2)(x-3)(x-4)(x2+mx+
)所以f(x)=
+
,由此能求出f(1)+f(5)的值.
1 |
x |
1 |
24 |
(x-2)(x-3)(x-4)(x2+mx+
| ||
x |
1 |
x |
解答:解:由已知,
设g(x)=(f(x)-
)x=x5+ax4+bx3+cx2+dx-1
=(x-2)(x-3)(x-4)(x2+mx+
)
所以f(x)=
+
,
f(1)=-6(
+m)+1=-
-6m,f(5)=
+
=
+6m,
所以f(1)+f(5)=25,
故选D.
设g(x)=(f(x)-
1 |
x |
=(x-2)(x-3)(x-4)(x2+mx+
1 |
24 |
所以f(x)=
(x-2)(x-3)(x-4)(x2+mx+
| ||
x |
1 |
x |
f(1)=-6(
25 |
24 |
21 |
4 |
6(25
| ||
5 |
1 |
5 |
121 |
4 |
所以f(1)+f(5)=25,
故选D.
点评:本题考查函数值的求法,综合性强,难度大,容易出错.解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.

练习册系列答案
相关题目

π |
2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|