题目内容
【题目】设点为圆上的动点,点在轴上的投影为,动点满足,动点的轨迹为.
(Ⅰ)求的方程;
(Ⅱ)设的左顶点为,若直线与曲线交于两点,(,不是左右顶点),且满足,求证:直线恒过定点,并求出该定点的坐标.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)设P(x,y),M(x0,y0),由已知条件建立二者之间的关系,利用坐标转移法可得轨迹方程;
(2)由向量条件结合矩形对角线相等可得DA,DB垂直,斜率之积为﹣1,再联立直线与椭圆方程,得根与系数关系,逐步求解得证.
(Ⅰ)设点,,由题意可知
∵,∴,
即,
又点在圆上 ∴
代入得
即轨迹的方程为
(Ⅱ)由(Ⅰ)可知,设,
联立 得
即,
∴
又
∵ ∴ 即
即
∴
∴
解得,,且均满足即
当时,的方程为,直线恒过,与已知矛盾;
当,的方程为,直线恒过
所以,直线过定点,定点坐标为.
练习册系列答案
相关题目
【题目】某销售公司拟招聘一名产品推销员,有如下两种工资方案:
方案一:每月底薪2000元,每销售一件产品提成15元;
方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.
(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;
(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:
月销售产品件数 | 300 | 400 | 500 | 600 | 700 |
次数 | 2 | 4 | 9 | 5 | 4 |
把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.