题目内容
设-5<a<5,集合M={x∈N|2x-(a+5)x-10=0}.若M≠?,则满足条件的所有实数a的和等于( )
分析:先由条件判断x≥4,由于函数的导数大于零,可得f(x)在x≥4时单调增,故至多只有一个零点.分别令f(4)=0、
f(5)=0、f(6)=0、f(7)=0,求得a的值,x≥7时,f(x)恒大于0,不会有零点.最后把求得的a值相加,即得所求.
f(5)=0、f(6)=0、f(7)=0,求得a的值,x≥7时,f(x)恒大于0,不会有零点.最后把求得的a值相加,即得所求.
解答:解:因-5<a<5,x为自然数,且2x=(a+5)x+10≥10,∴x≥4.
令f(x)=2x-(a+5)x-10 得:f'(x)=2x ln2-(a+5)≥16ln2-(a+5)>0,
即f(x)在x≥4时单调增,故至多只有一个零点.
令f(4)=6-4(a+5)=0,解得 a=-3.5;
f(5)=22-5(a+5)=0,解得:a=-0.6;
f(6)=54-6(a+5)=0,得:a=4;
f(7)=118-7(a+5)>0,x≥7时,f(x)恒大于0,不会有零点.
因此满足条件的a有3个,其和为-3.5-0.6+4=-0.1,
故选D.
令f(x)=2x-(a+5)x-10 得:f'(x)=2x ln2-(a+5)≥16ln2-(a+5)>0,
即f(x)在x≥4时单调增,故至多只有一个零点.
令f(4)=6-4(a+5)=0,解得 a=-3.5;
f(5)=22-5(a+5)=0,解得:a=-0.6;
f(6)=54-6(a+5)=0,得:a=4;
f(7)=118-7(a+5)>0,x≥7时,f(x)恒大于0,不会有零点.
因此满足条件的a有3个,其和为-3.5-0.6+4=-0.1,
故选D.
点评:本题考查了根的存在性及根的个数判断,求函数的导数,属于中档题.
练习册系列答案
相关题目