ÌâÄ¿ÄÚÈÝ
¼Çº¯Êýfn(x)=a•xn-1(a¡ÊR£¬n¡ÊN*)µÄµ¼º¯ÊýΪ
(x)£¬ÒÑÖª
(2)=12£®
£¨¢ñ£©ÇóaµÄÖµ£®
£¨¢ò£©É躯Êýgn(x)=fn(x)-n2Inx£¬ÊÔÎÊ£ºÊÇ·ñ´æÔÚÕýÕûÊýnʹµÃº¯Êýgn£¨x£©ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¿Èô´æÔÚ£¬ÇëÇó³öËùÓÐnµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ó£©ÈôʵÊýx0ºÍm£¨m£¾0£¬ÇÒm¡Ù1£©Âú×㣺
=
£¬ÊԱȽÏx0ÓëmµÄ´óС£¬²¢¼ÓÒÔÖ¤Ã÷£®
f | ¡ä n |
f | ¡ä 3 |
£¨¢ñ£©ÇóaµÄÖµ£®
£¨¢ò£©É躯Êýgn(x)=fn(x)-n2Inx£¬ÊÔÎÊ£ºÊÇ·ñ´æÔÚÕýÕûÊýnʹµÃº¯Êýgn£¨x£©ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¿Èô´æÔÚ£¬ÇëÇó³öËùÓÐnµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ó£©ÈôʵÊýx0ºÍm£¨m£¾0£¬ÇÒm¡Ù1£©Âú×㣺
| ||
|
fn(m) |
fn+1(m) |
·ÖÎö£º£¨¢ñ£©Ö±½ÓÓÉ
(2)=12ÁÐʽÇóaµÄÖµ£»
£¨¢ò£©Çó³öº¯ÊýµÄµ¼º¯Êý£¬Çó³öµ¼º¯ÊýµÄÁãµã£¬Óɵ¼º¯ÊýµÄÁãµã¶Ô¶¨ÒåÓò·Ö¶Î£¬Óɵ¼º¯ÊýµÄ·ûºÅÅжÏÔº¯ÊýµÄµ¥µ÷ÐÔ£¬Çó³öÔº¯ÊýµÄ×îÖµ£¬¸ù¾Ý×îÖµ·ÖÎöº¯ÊýµÄÁãµã¸öÊý£»
£¨¢ó£©Çó³öfn¡ä(x)=n•xn-1£¬´úÈë
=
£¬½â³öx0£¬°Ñx0Óëm×÷²îºó¹¹Ô츨Öúº¯Êý£¬Çó³ö¸¨Öúº¯ÊýµÄµ¼º¯Êý£¬Óɸ¨Öúº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉÖ¤Ã÷x0ÓëmµÄ²îÓë0µÄ´óС¹Øϵ£¬Ôò½áÂ۵õ½Ö¤Ã÷£®
f | ¡ä 3 |
£¨¢ò£©Çó³öº¯ÊýµÄµ¼º¯Êý£¬Çó³öµ¼º¯ÊýµÄÁãµã£¬Óɵ¼º¯ÊýµÄÁãµã¶Ô¶¨ÒåÓò·Ö¶Î£¬Óɵ¼º¯ÊýµÄ·ûºÅÅжÏÔº¯ÊýµÄµ¥µ÷ÐÔ£¬Çó³öÔº¯ÊýµÄ×îÖµ£¬¸ù¾Ý×îÖµ·ÖÎöº¯ÊýµÄÁãµã¸öÊý£»
£¨¢ó£©Çó³öfn¡ä(x)=n•xn-1£¬´úÈë
| ||
|
fn(m) |
fn+1(m) |
½â´ð£º½â£º£¨¢ñ£©f3¡ä(x)=3ax2£¬ÓÉf3¡ä(2)=12£¬µÃa=1£»
£¨¢ò£©gn(x)=xn-n2lnx-1£¬gn¡ä(x)=n•xn-1-
=
£¬
¡ßx£¾0£¬Áîgn¡ä(x)=0£¬µÃx=
£®
µ±x£¾
ʱ£¬gn¡ä(x)£¾0£¬gn£¨x£©ÊÇÔöº¯Êý£»
µ±0£¼x£¼
ʱ£¬gn¡ä(x)£¼0£¬gn£¨x£©ÊǼõº¯Êý£»
ËùÒÔµ±x=
ʱ£¬gn£¨x£©Óм«Ð¡Öµ£¬Ò²ÊÇ×îСֵ£¬gn(
)=n-nlnn-1£®
µ±x¡ú0ʱ£¬gn£¨x£©¡ú+¡Þ£»
µ±x¡ú+¡Þʱ£¬£¨¿ÉÈ¡x=e£¬e2£¬e3£¬¡ÌåÑ飩£¬gn£¨x£©¡ú+¡Þ£®
µ±n¡Ý3ʱ£¬gn(
)=n(1-lnn)-1£¼0£¬º¯Êýgn£¨x£©ÓÐÁ½¸öÁãµã£»
µ±n=2ʱ£¬gn(
)=-2ln2+1£¼0£¬º¯Êýgn£¨x£©ÓÐÁ½¸öÁãµã£»
µ±n=1ʱ£¬gn(
)=0£¬º¯Êýgn£¨x£©Ö»ÓÐÒ»¸öÁãµã£»
×ÛÉÏËùÊö£¬´æÔÚn=1ʹµÃº¯Êýgn£¨x£©ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£®
£¨¢ó£©fn¡ä(x)=n•xn-1£¬
¡ß
=
£¬¡à
=
£®
½âµÃx0=
£¬
Ôòx0-m=
£¬
µ±m£¾1ʱ£¬£¨n+1£©£¨mn-1£©£¾0£¬Éèh£¨x£©=-xn+1+x£¨n+1£©-n£¨x¡Ý1£©£¬
Ôòh¡ä£¨x£©=-£¨n+1£©xn+n+1=-£¨n+1£©£¨xn-1£©¡Ü0£¨µ±ÇÒ½öµ±x=1ʱȡµÈºÅ£©£¬
ËùÒÔh£¨x£©ÔÚ[1£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬
ÓÖÒòΪm£¾1£¬ËùÒÔh£¨m£©£¼h£¨1£©=0£¬ËùÒÔx0-m£¼0£¬ËùÒÔx0£¼m£®
µ±0£¼m£¼1ʱ£¬£¨n+1£©£¨mn-1£©£¼0£¬Éèh£¨x£©=-xn+1+x£¨n+1£©-n£¨0£¼x¡Ü1£©£¬
Ôòh¡ä£¨x£©=-£¨n+1£©xn+n+1=-£¨n+1£©£¨xn-1£©¡Ý0£¨µ±ÇÒ½öµ±x=1ʱȡµÈºÅ£©£¬
ËùÒÔh£¨x£©ÔÚ£¨0£¬1]ÉÏÊÇÔöº¯Êý£¬ÓÖÒòΪ0£¼m£¼1£¬ËùÒÔh£¨m£©£¼h£¨1£©=0£¬ËùÒÔx0-m£¾0£¬
ËùÒÔx0£¾m£®
×ÛÉÏËùÊö£¬µ±m£¾1£¬x0£¼m£®µ±0£¼m£¼1ʱ£¬x0£¾m£®
£¨¢ò£©gn(x)=xn-n2lnx-1£¬gn¡ä(x)=n•xn-1-
n2 |
x |
n(xn-n) |
x |
¡ßx£¾0£¬Áîgn¡ä(x)=0£¬µÃx=
n | n |
µ±x£¾
n | n |
µ±0£¼x£¼
n | n |
ËùÒÔµ±x=
n | n |
n | n |
µ±x¡ú0ʱ£¬gn£¨x£©¡ú+¡Þ£»
µ±x¡ú+¡Þʱ£¬£¨¿ÉÈ¡x=e£¬e2£¬e3£¬¡ÌåÑ飩£¬gn£¨x£©¡ú+¡Þ£®
µ±n¡Ý3ʱ£¬gn(
n | n |
µ±n=2ʱ£¬gn(
n | n |
µ±n=1ʱ£¬gn(
n | n |
×ÛÉÏËùÊö£¬´æÔÚn=1ʹµÃº¯Êýgn£¨x£©ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£®
£¨¢ó£©fn¡ä(x)=n•xn-1£¬
¡ß
fn¡ä(x0) |
fn-1¡ä(x0) |
fn(m) |
fn-1(m) |
nx0n-1 |
(n+1)x0n |
mn-1 |
mn+1-1 |
½âµÃx0=
n(mn+1-1) |
(n+1)(mn-1) |
Ôòx0-m=
-mn+1+m(n+1)-n |
(n+1)(mn-1) |
µ±m£¾1ʱ£¬£¨n+1£©£¨mn-1£©£¾0£¬Éèh£¨x£©=-xn+1+x£¨n+1£©-n£¨x¡Ý1£©£¬
Ôòh¡ä£¨x£©=-£¨n+1£©xn+n+1=-£¨n+1£©£¨xn-1£©¡Ü0£¨µ±ÇÒ½öµ±x=1ʱȡµÈºÅ£©£¬
ËùÒÔh£¨x£©ÔÚ[1£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬
ÓÖÒòΪm£¾1£¬ËùÒÔh£¨m£©£¼h£¨1£©=0£¬ËùÒÔx0-m£¼0£¬ËùÒÔx0£¼m£®
µ±0£¼m£¼1ʱ£¬£¨n+1£©£¨mn-1£©£¼0£¬Éèh£¨x£©=-xn+1+x£¨n+1£©-n£¨0£¼x¡Ü1£©£¬
Ôòh¡ä£¨x£©=-£¨n+1£©xn+n+1=-£¨n+1£©£¨xn-1£©¡Ý0£¨µ±ÇÒ½öµ±x=1ʱȡµÈºÅ£©£¬
ËùÒÔh£¨x£©ÔÚ£¨0£¬1]ÉÏÊÇÔöº¯Êý£¬ÓÖÒòΪ0£¼m£¼1£¬ËùÒÔh£¨m£©£¼h£¨1£©=0£¬ËùÒÔx0-m£¾0£¬
ËùÒÔx0£¾m£®
×ÛÉÏËùÊö£¬µ±m£¾1£¬x0£¼m£®µ±0£¼m£¼1ʱ£¬x0£¾m£®
µãÆÀ£º±¾Ì⿼²éÁ˵¼ÊýÔÚ×î´óÖµ×îСֵÖеÄÓ¦Ó㬿¼²éÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ïë·½·¨£¬ÑµÁ·Á˹¹Ô캯Êý·¨½øÐв»µÈʽµÄ´óС±È½Ï£¬ÊÇÓÐÒ»¶¨ÄѶÈÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿