题目内容
如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.
(1)求证:平面平面EBD;
(2)若PA=AB=2,直线PB与平面EBD所成角的正弦值为,求四棱锥P-ABCD的体积.
(1)证明过程详见解析;(2).
解析试题分析:本题主要以四棱锥为几何背景考查线面垂直、面面垂直、向量法、线面角、四棱锥的体积等基础知识,考查空间想象能力、逻辑推理能力、计算能力.第一问,利用线面垂直的性质得PA⊥BD,又因为BD⊥PC,利用线面垂直的判定得到BD⊥平面PAC,最后利用面面垂直的判定得到平面PAC⊥平面EBD;第二问,由于BD⊥平面PAC,所以BD⊥AC,得到ABCD为菱形,根据垂直关系建立空间直角坐标系,得到相关的的坐标,从而得到相关向量的坐标,用向量法求出平面EBD的一个法向量,再利用夹角公式列出等式,在中,列出一个等式,2个等式联立,解出b和c的值,得到b和c即OB和OC边长后,即可求出面ABCD的面积,而PA是锥体的高,利用锥体的体积公式求出四棱锥的体积.
试题解析:(1)因为PA⊥平面ABCD,所以PA⊥BD.
又BD⊥PC,所以BD⊥平面PAC,
因为BDÌ平面EBD,所以平面PAC⊥平面EBD. 4分
(2)由(1)可知,BD⊥AC,所以ABCD是菱形,BC=AB=2. 5分
设AC∩BD=O,建立如图所示的坐标系O-xyz,设OB=b,OC=c,
则P(0,-c,2),B(b,0,0),E(0,-c,1),C(0,c,0).
,,.
设n=(x,y,z)是面EBD的一个法向量,则,
即取n=(0,1,c). 8分
依题意,. ①
记直线PB与平面EBD所成的角为θ,由已知条件
. ②
解得,c=1. 10分
所以四棱锥P-ABCD的体积
. 12分
考点:线面垂直、面面垂直、向量法、线面角、四棱锥的体积.