题目内容
设,,,是平面直角坐标系中两两不同的四点,若,,且,则称,调和分割,,已知点C(c,0),
D(d,0) (c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是( )
A.C可能是线段AB的中点 B.D可能是线段AB的中点
C.C,D可能同时在线段AB上 D.C,D不可能同时在线段AB的延长线上
【答案】
D
【解析】
试题分析:根据新定义,,,且,则称,调和分割,那么同时也知道,,,四点共线,由于点C(c,0),
D(d,0) (c,d∈R)调和分割点A(0,0),B(1,0),则可知(c,0)=(1,0),可知c=,同理可知(d,0)=(1,0),d=,由于,则可之,那么可知,满足等式的点时,选项A成立。当时,则选项B成立。当c=d=1,则可知选项C成立,排除法则选D.
考点:本试题考查了向量的共线的运用。
点评:解决该试题的关键是对于已知中的向量的共线的理解和变形运用。通过给定的参数的关系式说明了点的位置情况,属于中档题。
练习册系列答案
相关题目