题目内容
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x,则称(x,f(x))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数,请你根据上面探究结果,解答以下问题(1)函数f(x)=x3-x2+3x-的对称中心为 ;
(2)计算+…+f()= .
【答案】分析:(1)根据函数f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,由此求得三次函数f(x)=x3-x2+3x-的对称中心.
(2)由f(x)=x3-x2+3x-的对称中心为(,1),知f(x)+f(1-x)=2,由此能够求出+…+f().
解答:解:(1)∵f(x)=x3-x2+3x-,
∴f′(x)=x2-x+3,f''(x)=2x-1,
令f''(x)=2x-1=0,得x=,
∵f()=+3×=1,
∴f(x)=x3-x2+3x-的对称中心为(,1),
(2)∵f(x)=x3-x2+3x-的对称中心为(,1),
∴f(x)+f(1-x)=2,
∴+…+f()=2×1006=2012.
故答案为:(,1),2012.
点评:本小题主要考查函数与导数等知识,考查化归与转化的数学思想方法,考查化简计算能力,求函数的值以及函数的对称性的应用,属于难题.
(2)由f(x)=x3-x2+3x-的对称中心为(,1),知f(x)+f(1-x)=2,由此能够求出+…+f().
解答:解:(1)∵f(x)=x3-x2+3x-,
∴f′(x)=x2-x+3,f''(x)=2x-1,
令f''(x)=2x-1=0,得x=,
∵f()=+3×=1,
∴f(x)=x3-x2+3x-的对称中心为(,1),
(2)∵f(x)=x3-x2+3x-的对称中心为(,1),
∴f(x)+f(1-x)=2,
∴+…+f()=2×1006=2012.
故答案为:(,1),2012.
点评:本小题主要考查函数与导数等知识,考查化归与转化的数学思想方法,考查化简计算能力,求函数的值以及函数的对称性的应用,属于难题.
练习册系列答案
相关题目