题目内容

通项公式为an=an2+n的数列{an},若满足a1<a2<a3<a4<a5,且an>an+1对n≥8恒成立,则实数a的取值范围是
 
分析:an-an+1=(an2+n)-(an+12+n+1)=-a2n+1-1>0(n≥8),a2n+1≤-1,a< -
1
2n+1
,所以a<-
1
17
,an-an-1>0,a>-
1
2n+1
,a>-
1
9
.由此可知答案.
解答:解:an+1-an=an+12+n+1-an2-n=2na+a+1
当n≤4时,2na+a+1>0
a>-
1
2n+1
≥-1/9
当n≥8时,2na+a+1<0
a<-
1
2n+1
≤-
1
17

因此,-
1
9
<a<-
1
17

答案:-
1
9
<a<-
1
17
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网