题目内容
已知f(x)为R上的减函数,则满足f(
)>f(1)的实数x的取值范围是( )
1 |
x |
A、(-∞,1) |
B、(1,+∞) |
C、(-∞,0)∪(0,1) |
D、(-∞,0)∪(1,+∞) |
分析:由函数的单调性可直接得到
与1的大小,转化为解分式不等式,直接求解或特值法均可.
1 |
x |
解答:解:由已知得
<1解得x<0或x>1,
故选D.
1 |
x |
故选D.
点评:本题考查利用函数的单调性解不等式,属基本题.
练习册系列答案
相关题目
已知 f(x)为R上的可导函数,且f(x)<f'(x)和f(x)>0对于x∈R恒成立,则有( )
A、f(2)<e2-f(0),f(2010)>e2010-f(0) | B、f(2)>e2-f(0),f(2010)>e2010-f(0) | C、f(2)<e2-f(0),f(2010)<e2010-f(0) | D、f(2)<e2-f(0),f(2010)<e2010-f(0) |