题目内容

当实数m为何值时,复平面内表示复数z=(m2-8m+15)+(m2+3m-28)i的点
(1)位于第四象限;
(2)位于直线y=2x-40的右下方(不包括边界).
分析:(1)由已知中复平面内表示复数z=(m2-8m+15)+(m2+3m-28)i的点位于第四象限,可得复数的实部m2-8m+15>0,且虚部m2+3m-28<0;
(2)复平面内表示复数z=(m2-8m+15)+(m2+3m-28)i的点位于直线y=2x-40的右下方(不包括边界),可得(m2-8m+15)×2-40>m2+3m-28.
解答:解:(1)∵复平面内表示复数z=(m2-8m+15)+(m2+3m-28)i的点位于第四象限
∴m2-8m+15>0,且m2+3m-28<0…3分
解得m∈[(-∞,3)∪(5,+∞)]∩(-7,4)
即m∈(-7,3)…5分
(2)∵复平面内表示复数z=(m2-8m+15)+(m2+3m-28)i的点位于直线y=2x-40的右下方(不包括边界).
即(m2-8m+15)×2-40>m2+3m-28
即m2-19m+18>0…8分
解得m∈(-∞,1)∪(18,+∞)…10分
点评:本题考查的知识点是复数的代数表示法及其几何意义,二元一次不等式与平面区域,其中将已知条件转化为关于m的不等式(组)是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网