题目内容
四棱锥P-ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=,
(1)求证:PD⊥平面ABCD;
(2)求证,直线PB与AC垂直;
(3)求二面角A-PB-D的大小;
(4)在这个四棱锥中放入一个球,求球的最大半径;
(5)求四棱锥外接球的半径.
解:(1)证明:∵PD=a,AD=a,PA=,
∴PD2+DA2=PA2,同理∴∠PDA=90°.
即PD⊥DA,PD⊥DC,∵AO∩DC=D,∴PD⊥平面ABCD.
(2)连接BD,∵ABCD是正方形
∴BD⊥AC
∵PD⊥平面ABCD
∴PD⊥AC
∵PD∩BD=D
∴AC⊥平面PDB∵PB?平面PDB
∴AC⊥PB∴PB与AC所成的角为90°
(3)设AC∩BD=0,过A作AE⊥PB于E,连接OE
∵AO⊥平面PBD∴OE⊥PB
∴∠AEO为二面角A-PB-D的平面角
∵PD⊥平面ABCD,AD⊥AB
∴PA⊥AB在Rt△PDB中,,
在Rt△PAB中,
∵
∴,
在Rt△AOE中,,∴∠AEO=60°∴二面角A-PB-D的大小为60.
(4)设此球半径为R,最大的球应与四棱锥各个面都相切,
设球心为S,连SA、SB、SC、SD、SP,则把此四棱锥分为五个棱锥,设它们的高均为R
S?ABCD=a2
∵VP-ABCD=VS-PDA+VS-PDC+VS-ABCD+VS-PAB+VS-PBC
∴∴
∴球的最大半径为()
(5)设PB的中点为F,∵在Rt△PDB中:FP=FB=FD
在Rt△PAB中:FA=FP=FB,在Rt△PBC中:FP=FB=FC
∴FP=FB=FA=FC=FD∴F为四棱锥外接球的球心
则FP为外接球的半径∵FP=∴
∴四棱锥外接球的半径为
分析:(1)要证PD⊥平面ABCD,只需证PD垂直于平面ABCD内的两条相交线,而所给已知量都是数,故可考虑勾股定理的逆定理.
(2)从图形的特殊性,应先考虑PB与AC是否垂直,若不垂直然后再转化.
(3)由于AC⊥平面PBD,所以用垂线法作出二面角的平面角.
(4)当所放的球与四棱锥各面都相切时球的半径最大,即球心到各个面的距离均相等,联想到用体积法求解.
(5)四棱锥的外接球的球心到P、A、B、C、D五的距离均为半径,只要找出球心的位置即可,在Rt△PDB中,斜边PB的中点为F,则PF=FB=FD不要证明FA=FC=FP即可.
点评:本题主要考查棱锥的性质以及内切外接的相关知识点.“内切”和“外接”等有关问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间关系,然后把相关的元素放到这些关系中解决问题,例如本例中球内切于四棱锥中时,球与四棱锥的五个面相切,即球心到五个面的距离相等.求体积或运用体和解决问题时,经常使用等积变形,即把一个几何体割补成其它几个几何体的和或差.
∴PD2+DA2=PA2,同理∴∠PDA=90°.
即PD⊥DA,PD⊥DC,∵AO∩DC=D,∴PD⊥平面ABCD.
(2)连接BD,∵ABCD是正方形
∴BD⊥AC
∵PD⊥平面ABCD
∴PD⊥AC
∵PD∩BD=D
∴AC⊥平面PDB∵PB?平面PDB
∴AC⊥PB∴PB与AC所成的角为90°
(3)设AC∩BD=0,过A作AE⊥PB于E,连接OE
∵AO⊥平面PBD∴OE⊥PB
∴∠AEO为二面角A-PB-D的平面角
∵PD⊥平面ABCD,AD⊥AB
∴PA⊥AB在Rt△PDB中,,
在Rt△PAB中,
∵
∴,
在Rt△AOE中,,∴∠AEO=60°∴二面角A-PB-D的大小为60.
(4)设此球半径为R,最大的球应与四棱锥各个面都相切,
设球心为S,连SA、SB、SC、SD、SP,则把此四棱锥分为五个棱锥,设它们的高均为R
S?ABCD=a2
∵VP-ABCD=VS-PDA+VS-PDC+VS-ABCD+VS-PAB+VS-PBC
∴∴
∴球的最大半径为()
(5)设PB的中点为F,∵在Rt△PDB中:FP=FB=FD
在Rt△PAB中:FA=FP=FB,在Rt△PBC中:FP=FB=FC
∴FP=FB=FA=FC=FD∴F为四棱锥外接球的球心
则FP为外接球的半径∵FP=∴
∴四棱锥外接球的半径为
分析:(1)要证PD⊥平面ABCD,只需证PD垂直于平面ABCD内的两条相交线,而所给已知量都是数,故可考虑勾股定理的逆定理.
(2)从图形的特殊性,应先考虑PB与AC是否垂直,若不垂直然后再转化.
(3)由于AC⊥平面PBD,所以用垂线法作出二面角的平面角.
(4)当所放的球与四棱锥各面都相切时球的半径最大,即球心到各个面的距离均相等,联想到用体积法求解.
(5)四棱锥的外接球的球心到P、A、B、C、D五的距离均为半径,只要找出球心的位置即可,在Rt△PDB中,斜边PB的中点为F,则PF=FB=FD不要证明FA=FC=FP即可.
点评:本题主要考查棱锥的性质以及内切外接的相关知识点.“内切”和“外接”等有关问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间关系,然后把相关的元素放到这些关系中解决问题,例如本例中球内切于四棱锥中时,球与四棱锥的五个面相切,即球心到五个面的距离相等.求体积或运用体和解决问题时,经常使用等积变形,即把一个几何体割补成其它几个几何体的和或差.
练习册系列答案
相关题目