题目内容
(2013•兰州一模)选修4-1:《几何证明选讲》
已知:如图,⊙O为△ABC的外接圆,直线l为⊙O的切线,切点为B,直线AD∥l,交BC于D、交⊙O于E,F为AC上一点,且∠EDC=∠FDC.求证:
(Ⅰ)AB2=BD•BC;
(Ⅱ)点A、B、D、F共圆.
已知:如图,⊙O为△ABC的外接圆,直线l为⊙O的切线,切点为B,直线AD∥l,交BC于D、交⊙O于E,F为AC上一点,且∠EDC=∠FDC.求证:
(Ⅰ)AB2=BD•BC;
(Ⅱ)点A、B、D、F共圆.
分析:(I)利用直线l为⊙O的切线,可得∠1=∠ACB.利用AD∥l,可得∠1=∠DAB.于是∠ACB=∠DAB,即可得出△ABC∽△DAB.利用相似三角形的性质可得
=
.
(Ⅱ)由(Ⅰ)可知∠BAC=∠ADB.已知∠EDC=∠FDC,∠EDC=∠ADB,可得∠BAC=∠FDC.即可得出点A、B、D、F共圆.
AB |
DB |
BC |
AB |
(Ⅱ)由(Ⅰ)可知∠BAC=∠ADB.已知∠EDC=∠FDC,∠EDC=∠ADB,可得∠BAC=∠FDC.即可得出点A、B、D、F共圆.
解答:证明:(I)∵直线l为⊙O的切线,∴∠1=∠ACB.
∵AD∥l,∴∠1=∠DAB.
∴∠ACB=∠DAB,
又∵∠ABC=∠DBA,
∴△ABC∽△DAB.
∴
=
.
∴AB2=BD•BC.
(Ⅱ)由(Ⅰ)可知∠BAC=∠ADB.
∵∠EDC=∠FDC,∠EDC=∠ADB,
∴∠BAC=∠FDC.∴∠BAC+∠FDB=∠FDC+∠FDB=180°.
∴点A、B、D、F共圆.
∵AD∥l,∴∠1=∠DAB.
∴∠ACB=∠DAB,
又∵∠ABC=∠DBA,
∴△ABC∽△DAB.
∴
AB |
DB |
BC |
AB |
∴AB2=BD•BC.
(Ⅱ)由(Ⅰ)可知∠BAC=∠ADB.
∵∠EDC=∠FDC,∠EDC=∠ADB,
∴∠BAC=∠FDC.∴∠BAC+∠FDB=∠FDC+∠FDB=180°.
∴点A、B、D、F共圆.
点评:熟练掌握圆的切线的性质、平行线的性质、相似三角形的判定与性质、四点共圆的判定与性质等是解题的关键.
练习册系列答案
相关题目