题目内容
设分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且为它的右准线。
(Ⅰ)、求椭圆的方程;
(Ⅱ)、设为右准线上不同于点(4,0)的任意一点,若直线分别与椭圆相交于异于的点,证明点在以为直径的圆内。
(此题不要求在答题卡上画图)
解:(Ⅰ)依题意得 a=2c,=4,解得a=2,c=1,从而b=.
故椭圆的方程为 .
(Ⅱ)解法1:由(Ⅰ)得A(-2,0),B(2,0).设M.
∵M点在椭圆上,∴y0=(4-x02). ………………… ①
又点M异于顶点A、B,∴-2<x0<2,由P、A、M三点共线可以得
P(4,).
从而=(x0-2,y0),
=(2,).
∴?=2x0-4+=(x02-4+3y02). … …………… ②
将①代入②,化简得?=(2-x0).
∵2-x0>0,∴?>0,则∠MBP为锐角,从而∠MBN为钝角,
故点B在以MN为直径的圆内。
解法2:由(Ⅰ)得A(-2,0),B(2,0).设M(x1,y1),N(x2,y2),
则-2< x1<2,-2< x2<2,又MN的中点Q的坐标为(,),
依题意,计算点B到圆心Q的距离与半径的差
-=(-2)2+()2-[( x1-x2)2+(y1-y2)2]
=(x1-2) (x2-2)+y1y2 ③
又直线AP的方程为y=,直线BP的方程为y=,
而点两直线AP与BP的交点P在准线x=4上,
∴,即y2= ④
又点M在椭圆上,则,即 ⑤
于是将④、⑤代入③,化简后可得-=.
从而,点B在以MN为直径的圆内。
练习册系列答案
相关题目