题目内容

已知函数其中m∈R且m≠o.
(1)判断函数f1(x)的单调性;
(2)若m<一2,求函数f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;
(3)设函数当m≥2时,若对于任意的x1∈[2,+∞),总存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.试求m的取值范围.
【答案】分析:(1)求出f1′(x),分m大于0和m小于0两种情况,令导函数大于0解出x的范围即为函数的增区间,令导函数小于0解出x的范围即为函数的减区间;
(2)由m小于-2及-2≤x≤2得到x-m大于0,即可化简f2(x),然后分别把两个解析式代入得到f(x),根据(1)得到函数f1(x)在区间[-2,2]上为减函数,且f2(x)也为减函数,所以得到f(-2)最大,f(2)最小,分别求出值即可;
(3)当m大于等于2时,x1∈[2,+∞)时得到g(x1)等于f1(x),g(x1)在[2,+∞)上是减函数得到,得到g(x1)的范围,同理,x2∈(一∞,2)时g(x2)等于f2(x),g(x2)在(-∞,2)上单调递增得到g(x2)的范围,根据g(x1)=g(x2)列出关于m的不等式,根据函数的单调性即可得到m的范围.
解答:解:(1)∵
则当m>0时,在(-2,2)上函数f1(x)单调递增;在(-∞,-2)及(2,+∞)上单调递减.
当m<0时,在(-2,2)上函数f1(x)单调递减;在(-∞,-2)及(2,+∞)上单调递增;
(2)由m<-2,-2≤x≤2,得x-m>0,则

由(1)知,当m<-2,-2≤x≤2时,f1(x)在[-2,2]上是减函数,而在[-2,2]上也是减函数,
∴当x=-2时,f(x)取最大值4•,当x=2时,f(x)取最小值
(3)当m≥2时,
由(1)知,此时函数g(x1)在[2,+∞)上是减函数,
从而g(x1)∈(0,f1(2)),即
若m≥2,由于x2<2,

∴g(x2)在(-∞,2)上单调递增,
从而g(x2)∈(0,f2(2))

要使g(x1)=g(x2)成立,
只需,即成立即可
由函数在[2,+∞)上单调递增,
且h(4)=0,得m<4,
所以2≤m<4
点评:此题考查学生会根据导函数的正负确定原函数的单调区间,会根据函数的增减性得求出函数的最值,理解函数最值及几何意义,会根据函数的增减性求出自变量的取值范围,是一道综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网