题目内容

本小题满分16分)

已知函数是自然对数的底数).

(1)若曲线处的切线也是抛物线的切线,求的值;

(2)若对于任意恒成立,试确定实数的取值范围;

(3)当时,是否存在,使曲线在点处的切线斜率与 在上的最小值相等?若存在,求符合条件的的个数;若不存在,请说明理由.

 

【答案】

解:(1),所以在处的切线为

即:                          ………………………………2分

联立,消去

知,.        ………………………………4分

(2)

①当时,上单调递增,且当时,

,故不恒成立,所以不合题意 ;………………6分

②当时,恒成立,所以符合题意;

③当时令,得, 当时,

时,,故上是单调递减,在上是单调递增, 所以

综上:.                 ………………………………10分

(3)当时,由(2)知

,则

假设存在实数,使曲线在点处的切线斜率与上的最小值相等,即为方程的解,………………………………13分

得:,因为, 所以.

,则 ,

,当,所以上单调递减,在上单调递增,,故方程 有唯一解为1,

所以存在符合条件的,且仅有一个.  …………………………16分

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网