题目内容
(本小题满分13分)
已知平面内一动点到点的距离与点到轴的距离的差等于1.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点,与轨迹相交于点,求的最小值.
解析:(I)设动点的坐标为,
由题意为
化简得
当、
所以动点P的轨迹C的方程为
(II)由题意知,直线的斜率存在且不为0,设为,则的方程为.
由,得
设则是上述方程的两个实根,于是
.
因为,所以的斜率为.
设则同理可得
故
当且仅当即时,取最小值16.
练习册系列答案
相关题目