题目内容
某同学用“五点法”画函数在某一
个周期内的图象时,列表并填入的部分数据如下表:
(1)请求出上表中的,并直接写出函数的解析式;
(2)将的图象沿轴向右平移个单位得到函数,若函数在(其中)上的值域为,且此时其图象的最高点和最低点分别为,求与夹角的大小.
(1);(2).
解析试题分析:本题主要考查五点作图法、三角函数图象的平移、三角函数值域、向量的夹角公式等基础知识,考查学生的分析问题解决问题的能力、计算能力,考查学生的数形结合思想.第一问,结合且,得出和,再解方程求出的值,再结合三角函数图象写出解析式;第二问,先将图象向右平移得到解析式,结合正弦图象,利用值域确定最高点、最低点的坐标,从而得到和向量坐标,利用夹角公式求出,再确定角.
试题解析:(1),,
(2)将的图像沿轴向右平移个单位得到函数
由于在上的值域为,
则,故最高点为,最低点为.
则,,则
故.
考点:五点作图法、三角函数图象的平移、三角函数值域、向量的夹角公式.
练习册系列答案
相关题目