ÌâÄ¿ÄÚÈÝ
£¨2013•³çÃ÷ÏØһģ£©ÒÑÖªÊýÁÐ{an}£¬¼ÇA£¨n£©=a1+a2+a3+¡+an£¬B£¨n£©=a2+a3+a4+¡+an+1£¬C£¨n£©=a3+a4+a5+¡+an+2£¬£¨n=1£¬2£¬3£¬¡£©£¬²¢ÇÒ¶ÔÓÚÈÎÒân¡ÊN*£¬ºãÓÐan£¾0³ÉÁ¢£®
£¨1£©Èôa1=1£¬a2=5£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬Èý¸öÊýA£¨n£©£¬B£¨n£©£¬C£¨n£©×é³ÉµÈ²îÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Ö¤Ã÷£ºÊýÁÐ{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁеijä·Ö±ØÒªÌõ¼þÊÇ£º¶ÔÈÎÒân¡ÊN*£¬Èý¸öÊýA£¨n£©£¬B£¨n£©£¬C£¨n£©×é³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ®
£¨1£©Èôa1=1£¬a2=5£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬Èý¸öÊýA£¨n£©£¬B£¨n£©£¬C£¨n£©×é³ÉµÈ²îÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Ö¤Ã÷£ºÊýÁÐ{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁеijä·Ö±ØÒªÌõ¼þÊÇ£º¶ÔÈÎÒân¡ÊN*£¬Èý¸öÊýA£¨n£©£¬B£¨n£©£¬C£¨n£©×é³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ®
·ÖÎö£º£¨1£©ÓɵȲîÖÐÏ¼ò¿ÉµÃan+2-an+1=a2-a1=4£¬n¡ÊN*£¬¿ÉµÃ{an}ΪµÈ²îÊýÁУ¬½ø¶ø¿ÉµÃͨÏʽ£»
£¨2£©ÓɵȱÈÊýÁеĶ¨Ò壬½áºÏÌâÒâ´Ó³ä·ÖÐԺͱØÒªÐÔÁ½·½ÃæÀ´Ö¤Ã÷£®
£¨2£©ÓɵȱÈÊýÁеĶ¨Ò壬½áºÏÌâÒâ´Ó³ä·ÖÐԺͱØÒªÐÔÁ½·½ÃæÀ´Ö¤Ã÷£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ2B£¨n£©=A£¨n£©+C£¨n£©£¬
´úÈë¿ÉµÃ2£¨a2+a3+a4+¡+an+1£©=£¨a1+a2+a3+¡+an£©+£¨a3+a4+¡+an+2£©£¬
»¯¼ò¿ÉµÃan+2-an+1=a2-a1=4£¬n¡ÊN*£¬ËùÒÔ£®
¡àÊýÁÐ{an}µÄͨÏʽan=4n-3£¬n¡ÊN*
£¨2£©£¨±ØÒªÐÔ£©ÈôÊýÁÐ{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬
Ôò
=
=q£¬
=
=q£¬
ËùÒÔA£¨n£©¡¢B£¨n£©¡¢C£¨n£©×é³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ®
£¨³ä·ÖÐÔ£©£ºÈô¶ÔÓÚÈÎÒân¡ÊN*£¬Èý¸öÊýA£¨n£©£¬B£¨n£©£¬C£¨n£©×é³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬
ÔòB£¨n£©=qA£¨n£©£¬C£¨n£©=qB£¨n£©£¬
ÓÚÊÇC£¨n£©-B£¨n£©=q[B£¨n£©-A£¨n£©]£¬µÃan+2-a2=q£¨an+1-a1£©£¬¼´an+2-qan+1=a2-a1£®
ÓÉn=1ÓÐB£¨1£©=qA£¨1£©£¬¼´a2=qa1£¬´Ó¶øan+2-qan+1=0£®
ÒòΪan£¾0£¬ËùÒÔ
=
=q£¬¹ÊÊýÁÐ{an}ÊÇÊ×ÏîΪa1£¬¹«±ÈΪqµÄµÈ±ÈÊýÁУ®
×ÛÉϿɵã¬ÊýÁÐ{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁеijäÒªÌõ¼þÊǶÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐA£¨n£©¡¢B£¨n£©¡¢C£¨n£©×é³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ®
´úÈë¿ÉµÃ2£¨a2+a3+a4+¡+an+1£©=£¨a1+a2+a3+¡+an£©+£¨a3+a4+¡+an+2£©£¬
»¯¼ò¿ÉµÃan+2-an+1=a2-a1=4£¬n¡ÊN*£¬ËùÒÔ£®
¡àÊýÁÐ{an}µÄͨÏʽan=4n-3£¬n¡ÊN*
£¨2£©£¨±ØÒªÐÔ£©ÈôÊýÁÐ{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬
Ôò
B(n) |
A(n) |
a2+a3+¡+an+1 |
a1+a2+¡an |
C(n) |
B(n) |
a3+a4+¡+an+2 |
a2+a3+¡an+1 |
ËùÒÔA£¨n£©¡¢B£¨n£©¡¢C£¨n£©×é³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ®
£¨³ä·ÖÐÔ£©£ºÈô¶ÔÓÚÈÎÒân¡ÊN*£¬Èý¸öÊýA£¨n£©£¬B£¨n£©£¬C£¨n£©×é³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬
ÔòB£¨n£©=qA£¨n£©£¬C£¨n£©=qB£¨n£©£¬
ÓÚÊÇC£¨n£©-B£¨n£©=q[B£¨n£©-A£¨n£©]£¬µÃan+2-a2=q£¨an+1-a1£©£¬¼´an+2-qan+1=a2-a1£®
ÓÉn=1ÓÐB£¨1£©=qA£¨1£©£¬¼´a2=qa1£¬´Ó¶øan+2-qan+1=0£®
ÒòΪan£¾0£¬ËùÒÔ
an+2 |
an+1 |
a2 |
a1 |
×ÛÉϿɵã¬ÊýÁÐ{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁеijäÒªÌõ¼þÊǶÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐA£¨n£©¡¢B£¨n£©¡¢C£¨n£©×é³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ®
µãÆÀ£º±¾ÌâÒԵȲîÊýÁеȱÈÊýÁÐΪÔØÌ壬¿¼²é³äÒªÌõ¼þµÄÅжϣ¬Êô»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿