题目内容
设函数f(x)=ax2+bx+c,已知f(0)=1,f(x)=f(3-x),且函数f(x)的图象与直线x+y=0有且只有一个交点.
(1)求函数f(x)的解析式;
(2)当a>
时,若函数g(x)=
在区间[e,e2]上是单调函数,求实数k的取值范围.
(1)求函数f(x)的解析式;
(2)当a>
1 |
2 |
f(lnx)+k-1 |
lnx |
分析:(1)根据题目给出的f(0)=1,求出c的值,运用f(x)=f(3-x),求出函数对称轴,用函数f(x)的图象与直线x+y=0有且只有一个交点联立后由判别式等于0列式,最后联立方程组求得a、b的值,则解析式可求;
(2)把f(x)代入函数g(x),求导函数后让导函数在区间[e,e2]上恒大于0或恒小于0求解实数k的取值范围.
(2)把f(x)代入函数g(x),求导函数后让导函数在区间[e,e2]上恒大于0或恒小于0求解实数k的取值范围.
解答:解:(1)因为函数f(x)=ax2+bx+c,由f(0)=1,得c=1,所以f(x)=ax2+bx+1,
又f(x)=f(3-x),所以二次函数的对称轴为x=
,即-
=
①
又函数f(x)的图象与直线x+y=0有且只有一个交点,联立
得:ax2+(b+1)x+1=0
所以(b+1)2-4a=0 ②
解①②得:a=1,b=-3或a=
,b=-
所以f(x)=x2-3x+1,或f(x)=
x2-
x+1
(2)当a>
时,f(x)=x2-3x+1,
g(x)=
=lnx+
-3,
g′(x)=
-
=(1-
)×
,
因为函数定义域为(0,+∞)所以要使函数g(x)在区间[e,e2]上是单调函数,
所以需要1-
≤0或1-
≥0在[e,e2]上恒成立,
解得k≥4或k≤1.
又f(x)=f(3-x),所以二次函数的对称轴为x=
3 |
2 |
b |
2a |
3 |
2 |
又函数f(x)的图象与直线x+y=0有且只有一个交点,联立
|
所以(b+1)2-4a=0 ②
解①②得:a=1,b=-3或a=
1 |
9 |
1 |
3 |
所以f(x)=x2-3x+1,或f(x)=
1 |
9 |
1 |
3 |
(2)当a>
1 |
2 |
g(x)=
(lnx)2-3lnx+1+k-1 |
lnx |
k |
lnx |
g′(x)=
1 |
x |
k |
x•ln2x |
k |
ln2x |
1 |
x |
因为函数定义域为(0,+∞)所以要使函数g(x)在区间[e,e2]上是单调函数,
所以需要1-
k |
ln2x |
k |
ln2x |
解得k≥4或k≤1.
点评:本题考查利用导数研究函数的单调性,会利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值.掌握不等式恒成立时所取的条件.
练习册系列答案
相关题目
设函数f(x)=(a
-
)n,其中n=3
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是( )
x |
1 | ||
|
∫ | 2π π |
A、-
| ||
B、-160 | ||
C、160 | ||
D、20 |