题目内容
在△ABC中,,是边的中点,,交的延长线于,则下面结论中正确的是( )
A.△AED∽△ACB B. △AEB∽△ACD
C. △BAE∽△ACE D. △AEC∽△DAC
【答案】
C
【解析】解:△BAE∽△ACE,因为两三角形除有公共角∠E外,
还有一锐角对应相等:因为∠BAC=90°,∠EAD=90°,所以∠BAE=∠DAC=∠ACE.
得到△BAE∽△ACE,
至于A,是两直角三角形,一般地∠ADE≠∠ABC;以及∠ADE>∠ACB,故不会相似;
再看B,是两钝角三角形,其钝角∠ABE=180°-∠ABD;钝角∠ADC=180°-∠ADB,
一般地∠ABD≠∠ADB,所以∠ABE≠∠ADC,故两三角形不会相似;
对于D,两三角形中△DAC是等腰三角形,而△AEC一般不是等腰三角形,故两三角形不会相似.
综上可知只有:△BAE∽△ACE,
故选C.
练习册系列答案
相关题目
如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
BD,BC=2BD,则sinC的值为( )
3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|