题目内容
判断方程log2x+x2=0在区间[,1]内有没有实数根?为什么?
【答案】
方程log2x+x2=0在区间[,1]内有实根
【解析】解:设f(x)=log2x+x2,
∵f()=log2+()2=-1+=-<0,
f(1)=log21+1=1>0,∴f()·f(1)<0,函数f(x)=log2x+x2的图象在区间[,1]上是连续的,因此,f(x)在区间[, 1]内有零点,即方程log2x+x2=0在区间[,1]内有实根.
练习册系列答案
相关题目