题目内容

数列{an}满足:a1=1,an+1=
an+2
an+1

(I)求证:1<an<2(n∈N*,n≥2),
(Ⅱ)令bn=|an-
2
|
(1)求证:{bn}是递减数列;
(2)设{bn}的前n项和为Sn,求证:Sn
2(2
2
-1)
7
分析:(I)先由递推式求出a2,然后用数学归纳法证明;
(Ⅱ)(1)通过作商证明
bn+1
bn
<1;(2)由(1)可得
bn+1
bn
2
-1
2
,即bn+1
2
-1
2
bn
,利用迭代法可得bn
2
-1
2
bn-1<(
2
-1
2
)2bn-2
<…<(
2
-1
2
)n-1b1
=(
2
-1)(
2
-1
2
)n-1

利用该结论及等比数列前n项和公式可证明结论;
解答:解:(Ⅰ)a1=1,a2=
1+2
1+1
=
3
2

(1)n=2时,1<a2=
3
2
<2,∴n=2时不等式成立;
(2)假设n=k(k∈N*,k≥2)时不等式成立,即1<ak<2,
ak+1=1+
1
ak+1

4
3
ak+1
3
2

∴n=k+1时不等式成立,
由(1)(2)可知对n∈N*,n≥2都有1<an<2;
(Ⅱ)(1)
bn+1
bn
=
|an+1-
2
|
|an-
2
|
=
|
an+2
an+1
-
2
|
|an-
2
|

=
1
|an+1|
|an+2-
2
an-
2
|
|an-
2
|

=
1
|an+1|
|an(1-
2
)+
2
(
2
-1)|
|an-
2
|
=
|
2
-1|
|an+1|

|
2
-1|
|an+1|
2
-1
2
<1,
∴{bn}是递减数列;
(2)由(1)知:
bn+1
bn
2
-1
2
,∴bn+1
2
-1
2
bn

bn
2
-1
2
bn-1<(
2
-1
2
)2bn-2
<…<(
2
-1
2
)n-1b1
=(
2
-1)(
2
-1
2
)n-1

所以Sn=b1+b2+b3+…+bn<(
2
-1)[1+
2
-1
2
+(
2
-1
2
)2+…+(
2
-1
2
)n-1]

=(
2
-1)
1-(
2
-1
2
)n
1-
2
-1
2

=
2(
2
-1)(3+
2
)
7
[1-(
2
-1
2
)n]
2(2
2
-1)
7
点评:本题考查数列递推式、数列的函数特性、等比数列前n和公式、数学归纳法等知识,考查学生的推理证明能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网