题目内容

已知定义域为R的偶函数f(x)=ax+b•a-x(a>0,a≠1,b∈R).
(1)求实数b的值;
(2)判断并证明f(x)的单调性;
(3)若f((log2x)2-log2x+1)≥f(m+log
12
x2)
对任意x∈[2,4]恒成立,求实数m的取值范围.
分析:(1)由题意可得,f(-x)=f(x),化简可得(b-1)(ax-a-x)=0,由此解得 b的值.
(2)设0≤x1<x2,化简f(x1)-f(x2)为 (ax1-ax2)(
ax1+x2-1
ax1+x2
)
,当a>1时,可得f(x1)<f(x2),故f(x)为[0,+∞)上的增函数.当a<1时,可得
f(x1)<f(x2),f(x)为[0,+∞)上的增函数.
(3)条件等价于-(log2x)2+log2x-1≤m-2log2x≤(log2x)2-log2x+1对任意x∈[2,4]恒成立.令t=log2x,等价于-t2+3t-1≤m≤t2+t+1对任意t∈[1,2]恒成立,求得-t2+3t-1在[1,2]上的最大值和 t2+t+1在[1,2]上的最小值,即可求得实数m的取值范围.
解答:解:(1)由题意可得,f(-x)=f(x),可得 a-x+b•ax =ax+b•a-x ,∴(b-1)(ax-a-x)=0,解得 b=1.…(3分)
(2)设0≤x1<x2,∵f(x1)-f(x2)=(ax1+a-x1)-(ax2+a-x2)=(ax1-ax2)+(a-x1-a-x2)
=(ax1-ax2)+
ax2-ax1
ax1+x2
=(ax1-ax2)(
ax1+x2-1
ax1+x2
)

当a>1时,ax1-ax2<0,ax1+x2>1,可得f(x1)<f(x2),故f(x)为[0,+∞)上的增函数.
当a<1时,ax1-ax2>0,ax1+x2<1,可得f(x1)<f(x2),f(x)为[0,+∞)上的增函数.
综上可得,当a>0,a≠1时,f(x)为[0,+∞)上的增函数.…(7分)
(3)f((log2x)2-log2x+1)≥f(m+log
1
2
x2)
对任意x∈[2,4]恒成立,等价于f((log2x)2-log2x+1)≥f(m-2log2x) 对任意x∈[2,4]恒成立,
等价于 |(log2x)2-log2x+1|≥|m-2log2x| 对任意x∈[2,4]恒成立,
等价于-(log2x)2+log2x-1≤m-2log2x≤(log2x)2-log2x+1对任意x∈[2,4]恒成立.
令t=log2x,问题等价于-t2+3t-1≤m≤t2+t+1对任意t∈[1,2]恒成立.
由于函数-t2+3t-1在[1,2]上的最大值为
5
4
,t2+t+1在[1,2]上的最小值为 3,
故问题等价于
5
4
≤m≤3
,故实数m的取值范围为[
5
4
,3].…(12分)
点评:本题主要考查函数的奇偶性、单调性,对数函数的性质应用,以及函数的恒成立问题,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网