题目内容
已知椭圆,斜率为1且过椭圆C1右焦点F的直线l交椭圆于A、B两点,且与a=(3,-1)共线.
(1)求椭圆C1的离心率.
(2)试证明直线OA斜率k1与直线OB斜率k2的乘积k1•k2为定值,并求值.
(3)若,试判断点M是否在椭圆上,并说明理由.
解:设F(c,0),则直线l方程为y=x-c,代入椭圆方程:
,(a2+b2)x2-2ca2x+a2c2-a2b2=0
∴,;
∴y1+y2=x1+x2-2c
∴4
得a2=3d2
∴a2=3(a2-c2)
得:
∴椭圆离心率为.
(2)由(1)可知{a2=3b2,c2=2b2
∴
∴
∴
∴直线OA斜率k1与直线OB斜率k2乘积为定值
(3)设点M为(x0,y0),则
且由(2)知:x1x2+3y1y2=0
∴
∴点M为(x0,y0)符合椭圆方程,
∴点M在椭圆上.
分析:(1)直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率
(2)由(1)可知{a2=3b2,c2=2b2从而,即可求得直线OA斜率k1与直线OB斜率k2乘积为定值;
(3)先设点M为(x0,y0),则,且由(2)知:x1x2+3y1y2=0,转化成等式:
从而得出点M在椭圆上.
点评:考查向量共线为圆锥曲线提供已知条件;处理直线与圆锥曲线位置关系常用的方法是直线与圆锥曲线方程联立用韦达定理.是高考常见题型且是解答题.
,(a2+b2)x2-2ca2x+a2c2-a2b2=0
∴,;
∴y1+y2=x1+x2-2c
∴4
得a2=3d2
∴a2=3(a2-c2)
得:
∴椭圆离心率为.
(2)由(1)可知{a2=3b2,c2=2b2
∴
∴
∴
∴直线OA斜率k1与直线OB斜率k2乘积为定值
(3)设点M为(x0,y0),则
且由(2)知:x1x2+3y1y2=0
∴
∴点M为(x0,y0)符合椭圆方程,
∴点M在椭圆上.
分析:(1)直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率
(2)由(1)可知{a2=3b2,c2=2b2从而,即可求得直线OA斜率k1与直线OB斜率k2乘积为定值;
(3)先设点M为(x0,y0),则,且由(2)知:x1x2+3y1y2=0,转化成等式:
从而得出点M在椭圆上.
点评:考查向量共线为圆锥曲线提供已知条件;处理直线与圆锥曲线位置关系常用的方法是直线与圆锥曲线方程联立用韦达定理.是高考常见题型且是解答题.
练习册系列答案
相关题目