题目内容
双曲线x2 |
a2 |
y2 |
b2 |
1 |
2 |
| ||
2 |
(1)求该双曲线的方程;
(2)是否存在直线y=kx+5 (k≠0)与双曲线交于相异两点C,D,使得 C,D两点都在以A为圆心的同一个圆上,若存在,求出直线方程;若不存在说明理由.
分析:(1)根据焦点到其相应准线的距离求得b和c的关系,设出直线AB的方程,进而利用点到直线的距离公式求得a和b,则双曲线的方程可得.
(2)假设直线存在,把直线与双曲线方程联立消去y,根据韦达定理表示出x1+x2和y1+y2,根据C,D两点都在以A为圆心的同一个圆上推断出|AC|=|AD|,进而求得CD中点的表达式,根据AM⊥CD,分别表示出其斜率,乘积为-1求得k,则直线方程可得.
(2)假设直线存在,把直线与双曲线方程联立消去y,根据韦达定理表示出x1+x2和y1+y2,根据C,D两点都在以A为圆心的同一个圆上推断出|AC|=|AD|,进而求得CD中点的表达式,根据AM⊥CD,分别表示出其斜率,乘积为-1求得k,则直线方程可得.
解答:解:(1)因为焦点到其相应准线的距离为
,所以
=
;
又因为过点A(0,-b),B(a,0)的直线与原点的距离为
;
可设直线方程为
-
=1,
由点到直线的距离公式得
=
,解得a=
,b=1,
所以双曲线方程为
-y2=1
(2)假设存在直线y=kx+5(k≠0,)与双曲线交于相异两点C,D,使得C,D两点都在以A为圆心的同一个圆上
∴
得(1-3k2)x2-30kx-78=0;可得
因为C,D两点都在以A为圆心的同一个圆上;所以有|AC|=|AD|,
所以直线CD的中点坐标为M(
,
)
因为AM⊥CD,所以
=-
,解得k=±
,
所以直线方程为:y=±
x+5
1 |
2 |
b2 |
c |
1 |
2 |
又因为过点A(0,-b),B(a,0)的直线与原点的距离为
| ||
2 |
可设直线方程为
x |
a |
y |
b |
由点到直线的距离公式得
ab | ||
|
| ||
2 |
3 |
所以双曲线方程为
x2 |
3 |
(2)假设存在直线y=kx+5(k≠0,)与双曲线交于相异两点C,D,使得C,D两点都在以A为圆心的同一个圆上
∴
|
|
因为C,D两点都在以A为圆心的同一个圆上;所以有|AC|=|AD|,
所以直线CD的中点坐标为M(
15k2 |
1-3k2 |
5 |
1-3k2 |
因为AM⊥CD,所以
| ||
|
1 |
k |
7 |
所以直线方程为:y=±
7 |
点评:本题主要考查了双曲线的标准方程和直线与双曲线的关系.考查了学生综合分析问题和解决问题的能力.运算能力的考查.
练习册系列答案
相关题目
若点O和点F(-2,0)分别是双曲线
-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则
•
的取值范围为( )
x2 |
a2 |
OP |
FP |
A、[3-2
| ||
B、[3+2
| ||
C、[-
| ||
D、[
|
已知双曲线
-y2=1的一个焦点坐标为(-
,0),则其渐近线方程为( )
x2 |
a2 |
3 |
A、y=±
| ||||
B、y=±
| ||||
C、y=±2x | ||||
D、y=±
|