题目内容
已知函数 .
(Ⅰ)若函数在区间其中上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.
(1);(2).
解析试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、极值、最值、不等式等基础知识,考查函数思想,考查综合分析和解决问题的能力.第一问,因为函数在上有极值,所以极值点的横坐标需落在内,对求导,令和判断出函数的单调区间,决定出极值点所在位置,得到极值点的横坐标,让落在区间内,列出不等式;第二问,将已知条件先转化为,下面主要任务是求函数的最小值,设出新函数,对它求导,判断出函数的单调性,确定当时有最小值,即,所以.
试题解析:(Ⅰ)因为,,则,
当时,,当时,.
所以在上单调递增,在上单调递减,
所以函数在处取得极大值.
因为函数在区间(其中)上存在极值,
所以 解得.
(Ⅱ)不等式即为 记
所以
令,则
,
在上单调递增,
,从而,
故在上也单调递增,
所以,所以
考点:1.利用导数判断函数的单调性;2.利用导数求函数的极值;3.利用导数求函数的最值;4.恒成立问题.
练习册系列答案
相关题目