题目内容
已知双同线的两个焦点为的曲线C上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程
解析:
(Ⅰ)解法1:依题意,由a2+b2=4,得双曲线方程为(0<a2<4), 将点(3,)代入上式,得.解得a2=18(舍去)或a2=2, 故所求双曲线方程为 解法2:依题意得,双曲线的半焦距c=2. 2a=|PF1|-|PF2|= ∴a2=2,b2=c2-a2=2. ∴双曲线C的方程为 (Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理, 得(1-k2)x2-4kx-6=0. ∵直线l与双曲线C相交于不同的两点E、F, ∴ ∴k∈(-)∪(1,). 设E(x1,y1),F(x2,y2),则由①式得x1+x2=于是 |EF|= = 而原点O到直线l的距离d=, ∴SΔOEF= 若SΔOEF=,即解得k=±, 满足②.故满足条件的直线l有两条,其方程分别为y=和 解法2:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理, 得(1-k2)x2-4kx-6=0. ① ∵直线l与比曲线C相交于不同的两点E、F, ∴ ∴k∈(-)∪(1,). ② 设E(x1,y1),F(x2,y2),则由①式得 |x1-x2|=. ③ 当E、F在同一支上时(如图1所示), SΔOEF=|SΔOQF-SΔOQE|=; 当E、F在不同支上时(如图2所示), SΔOEF=SΔOQF+SΔOQE= 综上得SΔOEF=,于是 由|OQ|=2及③式,得SΔOEF=. 若SΔOEF=2,即,解得k=±,满足②. 故满足条件的直线l有两条,基方程分别为y=和y= 本小题主要考查双曲线的定义、标准方程、直线和双曲线位置关系等平面解析几何的基础知识,考查待写系数法、不等式的解法以及综合运用数学知识进行推理运算的能力.(满分13分) |