题目内容
(2012•武清区一模)已知函数f(x)=7
sinxcosx+7sin2x-
,x∈R.
(Ⅰ)若f(x)的单调区间(用开区间表示);
(Ⅱ)若f(
-
)=1+4
,f(
-
)=2,求sin(
-
)的值.
3 |
5 |
2 |
(Ⅰ)若f(x)的单调区间(用开区间表示);
(Ⅱ)若f(
a |
2 |
π |
6 |
3 |
a |
2 |
5π |
12 |
a |
2 |
π |
3 |
分析:(Ⅰ)利用三角函数的恒等变换化简函数f(x)的解析式为7sin(2x-
)+1,令 2kπ-
≤2x-
≤2kπ+
,k∈z,求出增区间,由 2kπ+
≤2x-
≤2kπ+
,k∈z,求出减区间.
(Ⅱ)由 f(
-
)=1+4
,求得cosa=
.由f(
-
)=2,求得sina=-
.可得a为第三象限角,故
是第二或第四象限角.分类求出cos
和sin
的值,利用两角差的正弦公式求出sin(
-
)的值.
π |
6 |
π |
2 |
π |
6 |
π |
2 |
π |
2 |
π |
6 |
3π |
2 |
(Ⅱ)由 f(
a |
2 |
π |
6 |
3 |
-4
| ||
7 |
a |
2 |
5π |
12 |
1 |
7 |
a |
2 |
a |
2 |
a |
2 |
a |
2 |
π |
3 |
解答:解:(Ⅰ)由题意得:函数f(x)=7
sinxcosx+7sin2x-
=
sin2x+7×
-
=7(
sin2x-
cos2x)+1=7sin(2x-
)+1.
令 2kπ-
≤2x-
≤2kπ+
,k∈z,可得 kπ-
≤x≤kπ+
,k∈z,
故函数的增区间为[kπ-
,kπ+
],k∈z.
令 2kπ+
≤2x-
≤2kπ+
,k∈z,可得 kπ+
≤x≤kπ+
,k∈z,
故函数的减区间为[kπ+
≤x≤kπ+
],k∈z.
(Ⅱ)∵f(
-
)=1+4
,
∴7sin[2(
-
)-
]+1=7sin(a-
)+1=-7cosa+1=1+4
,
∴cosa=
.
∵f(
-
)=2,∴7sin[2(
-
)-
]+1=7sin[a-π]+1=-7sina+1=2,
∴sina=-
.
故a为第三象限角,且 2kπ+π<a<2kπ+
,k∈z,故 kπ+
<
<kπ+
,k∈z.
故
是第二或第四象限角.
当
是第二象限角时,sin
=
=
=
,
cos
=-
=-
=-
.
sin(
-
)=sin
cos
-cos
sin
=
×
-( -
)×
=
.
当
是第四象限角时,sin
=-
=-
=-
,
cos
=
=
=
.
sin(
-
)=sin
cos
-cos
sin
=-
×
-
×
=
.
3 |
5 |
2 |
7
| ||
2 |
1-cos2x |
2 |
5 |
2 |
=7(
| ||
2 |
1 |
2 |
π |
6 |
令 2kπ-
π |
2 |
π |
6 |
π |
2 |
π |
6 |
π |
3 |
故函数的增区间为[kπ-
π |
6 |
π |
3 |
令 2kπ+
π |
2 |
π |
6 |
3π |
2 |
π |
3 |
5π |
6 |
故函数的减区间为[kπ+
π |
3 |
5π |
6 |
(Ⅱ)∵f(
a |
2 |
π |
6 |
3 |
∴7sin[2(
a |
2 |
π |
6 |
π |
6 |
π |
2 |
3 |
∴cosa=
-4
| ||
7 |
∵f(
a |
2 |
5π |
12 |
a |
2 |
5π |
12 |
π |
6 |
∴sina=-
1 |
7 |
故a为第三象限角,且 2kπ+π<a<2kπ+
5π |
4 |
π |
2 |
a |
2 |
5π |
8 |
故
a |
2 |
当
a |
2 |
a |
2 |
|
|
2+
| ||
|
cos
a |
2 |
|
|
2-
| ||
|
sin(
a |
2 |
π |
3 |
a |
2 |
π |
3 |
a |
2 |
π |
3 |
2+
| ||
|
1 |
2 |
2-
| ||
|
| ||
2 |
3
| ||
2
|
当
a |
2 |
a |
2 |
|
|
2+
| ||
|
cos
a |
2 |
|
|
2-
| ||
|
sin(
a |
2 |
π |
3 |
a |
2 |
π |
3 |
a |
2 |
π |
3 |
2+
| ||
|
1 |
2 |
2-
| ||
|
| ||
2 |
1-3
| ||
2
|
点评:本题主要考查三角函数的恒等变换及化简求值,正弦函数的单调区间的求法,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目