题目内容
如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别为A1B1、A1A的中点.(Ⅰ)求 cos<
BA1 |
CB1 |
(Ⅱ)求证:BN⊥平面C1MN;
(Ⅲ)求点B1到平面C1MN的距离.
分析:(Ⅰ)建立空间坐标系,求出各个点的坐标,利用两个向量的夹角公式求得 cos<
,
>的值.
(Ⅱ)由
=0,
•
=0,得到
⊥
,
⊥
,从而得到BN⊥平面C1MN.
(Ⅲ)设点B1到平面C1MN的距离为h,由VB1-C1MN=VN-C1MB1,解方程求得 h 值.
BA1 |
CB1 |
(Ⅱ)由
BN |
•C1M |
BN |
C1N |
BN |
C1M |
BN |
C1N |
(Ⅲ)设点B1到平面C1MN的距离为h,由VB1-C1MN=VN-C1MB1,解方程求得 h 值.
解答:解:(Ⅰ)以CA所在直线为x轴,以CB所在直线为y轴,以CC1所在直线为z轴建立空间坐标系.
则A(1,0,0),B(0,1,0),A1 (1,0,2),B1 ( 0,1,2),C1(0,0,2),M(
,
,2),
N(1,0,1),
∵
=(1,-1,2),
=( 0,1,2).
∴cos<
,
>=
=
=
.
(Ⅱ)∵
=(1,-1,1),
=(
,
,0),
=(1,0,-1),
∴
=
-
+0=0,
•
=1-0-1=0,∴
⊥
,
⊥
,
∴BN⊥平面C1MN.
(Ⅲ)设点B1到平面C1MN的距离为h,∵VB1-C1MN=VN-C1MB1,
∴
×(
MN•MC1 )h=
×(
B1M•C1M ) NA1,
即
×(
•
)h=
×(
•
•
)×1,∴h=
.
则A(1,0,0),B(0,1,0),A1 (1,0,2),B1 ( 0,1,2),C1(0,0,2),M(
1 |
2 |
1 |
2 |
N(1,0,1),
∵
BA1 |
CB1 |
∴cos<
BA1 |
CB1 |
| ||||
|
|
(1,-1,2)•( 0,1,2) | ||||
|
| ||
10 |
(Ⅱ)∵
BN |
C1M |
1 |
2 |
1 |
2 |
C1N |
∴
BN |
•C1M |
1 |
2 |
1 |
2 |
BN |
C1N |
BN |
C1M |
BN |
C1N |
∴BN⊥平面C1MN.
(Ⅲ)设点B1到平面C1MN的距离为h,∵VB1-C1MN=VN-C1MB1,
∴
1 |
3 |
1 |
2 |
1 |
3 |
1 |
2 |
即
1 |
3 |
1 |
2 |
1+
|
| ||
2 |
1 |
3 |
1 |
2 |
| ||
2 |
| ||
2 |
| ||
3 |
点评:本题考查两个向量的夹角公式,线面垂直的判定,用等体积法求点到平面的距离,准确求出各个点的坐标是解题的关键.
练习册系列答案
相关题目