题目内容
已知数列{an}的前n项和为Sn,且对任意正整数n,有Sn,a |
2(a-1) |
(1)求数列{an}的通项公式an(用a,n表示)
(2)当a=
8 |
9 |
(3)若{bn}是一个单调递增数列,请求出a的取值范围.
分析:(1)由题设知
an+1=Sn+1+n+1,an+1+1=a(an+1),再由{an+1}是以a为公比的等比数列.知an+1=(a1+1)an-1
又由
a1=a1+1?a1=a-1,由此知an=an-1.
(2)a=
时,bn=n(
)nlg
,bn+1-bn=
•(
)n•lg
,
再经过分类讨论可知存在最小项且第8项和第9项最小.
(3)由bn+1>bn得bn+1-bn=(n+1)an+1lga-nanlga=an[(n+1)a-n]lga>0,由此入手能够得到a的取值范围.
a |
a-1 |
又由
a |
a-1 |
(2)a=
8 |
9 |
8 |
9 |
8 |
9 |
8-n |
9 |
8 |
9 |
8 |
9 |
再经过分类讨论可知存在最小项且第8项和第9项最小.
(3)由bn+1>bn得bn+1-bn=(n+1)an+1lga-nanlga=an[(n+1)a-n]lga>0,由此入手能够得到a的取值范围.
解答:解:(1)由题意
an=Sn+n①
∴
an+1=Sn+1+n+1②
②-①得
an+1=
an+1,
即an+1+1=a(an+1),{an+1}是以a为公比的等比数列.∴an+1=(a1+1)an-1
又由
a1=a1+1?a1=a-1∴an=an-1
(2)a=
时,bn=n(
)nlg
,bn+1-bn=
•(
)n•lg
当n<8时,bn+1-bn<0即bn+1<bn,∴b1>b2>>b8
当n=8时,bn+1-bn=0即bn+1=b&n,b8=b9
当n>8时,bn+1-bn>0即bn+1>bn∴b9<b10<
存在最小项且第8项和第9项最小
(3)由bn+1>bn得bn+1-bn=(n+1)an+1lga-nanlga=an[(n+1)a-n]lga>0
当a>1时,得(n+1)a-n>0,即a>
,显然恒成立,∴a>1
当0<a<1时,lga<0,∴(n+1)a-n<0即a<
,∴a<
,∴0<a<
综上,a的取值范围为(0,
)∪(1,+∞).
a |
a-1 |
∴
a |
a-1 |
②-①得
1 |
a-1 |
a |
a-1 |
即an+1+1=a(an+1),{an+1}是以a为公比的等比数列.∴an+1=(a1+1)an-1
又由
a |
a-1 |
(2)a=
8 |
9 |
8 |
9 |
8 |
9 |
8-n |
9 |
8 |
9 |
8 |
9 |
当n<8时,bn+1-bn<0即bn+1<bn,∴b1>b2>>b8
当n=8时,bn+1-bn=0即bn+1=b&n,b8=b9
当n>8时,bn+1-bn>0即bn+1>bn∴b9<b10<
存在最小项且第8项和第9项最小
(3)由bn+1>bn得bn+1-bn=(n+1)an+1lga-nanlga=an[(n+1)a-n]lga>0
当a>1时,得(n+1)a-n>0,即a>
n |
n+1 |
当0<a<1时,lga<0,∴(n+1)a-n<0即a<
n |
n+1 |
1 |
2 |
1 |
2 |
综上,a的取值范围为(0,
1 |
2 |
点评:本题考查数列的性质和应用,解题时要认真审题,合理解答,注意公式的灵活运用.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
A、16 | B、8 | C、4 | D、不确定 |