题目内容

如图,四棱锥的底面是矩形,底面PBC边的中点,SB与平面ABCD所成的角为45°,且AD=2,SA=1.

(1)求证:平面SAP;

(2)求二面角ASDP的大小.

(2)


解析:

证明:(1)因为底面

所以,∠SBASB与平面ABCD所成的角…………………….……….1分

由已知∠SBA=45°,所以AB=SA=1

易求得,AP=PD=,…………………………………….…..………….2分

又因为AD=2,所以AD2=AP2+PD2,所以.………….…….3分

因为SA⊥底面ABCD,平面ABCD,

所以SAPD,                …………….……………………….…....4分

由于SAAP=A     所以平面SAP. …………………………….5分

(2)设QAD的中点,连结PQ,       ……………………………….………6分

由于SA⊥底面ABCD,且SA平面SAD,则平面SAD⊥平面PAD……..7分

因为PQAD,所以PQ⊥平面SAD

QQRSD,垂足为R,连结PR,

由三垂线定理可知PRSD,

所以∠PRQ是二面角ASDP的平面角. …9分

容易证明△DRQ∽△DAS,则

因为DQ=1,SA=1,,所以….……….10分

在Rt△PRQ中,因为PQ=AB=1,所以………11分

所以二面角ASDP的大小为.……………….…….…….12分

或:过A在平面SAP内作,且垂足为H,在平面SAD内作,且垂足为E,连接HE,平面SAP平面SDP…………7分

∴HE为AE在平面SPD内的射影,∴由三垂线定理得

从而是二面角ASDP的平面角……………………………….9分

中,,在中,

.        ………………………………….11分

即二面角的大小为……………………………12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网