题目内容
【题目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)当x∈[0, ]时,求| + |的取值范围;
(2)若g(x)=( + ) ,求当k为何值时,g(x)的最小值为﹣ .
【答案】
(1)解: =(sinx﹣2cosx,sinx),
| |2=(sinx﹣2cosx,sinx)2
=2sin2x﹣4sinxcosx+4cos2x
=2cos2x﹣4sinxcosx+2
=cos2x﹣2sin2x+3
= cos(2x+φ)+3,其中,tanφ=2,
又∵x∈[0, ],
∴ ,
∴ 在 上单调递减,
∴| cos(2x+φ)|2∈[1,4],
∴| + |∈[1,2].
(2)解: =(2sinx,cosx+k),
g(x)=( )
=﹣4sinxcosx+(cosx+k)(sinx﹣k)
=﹣3sinxcosx+k(sinx﹣cosx)﹣k2
令t=sinx﹣cosx= sin(x﹣ ),
则t∈[﹣ , ],且t2=sin2x+cos2x﹣2sinxcosx=1﹣2sinxcosx,
所以 .
所以g(x)可化为 ,
对称轴 .
①当 ,即 时, ,
由 ,得 ,
所以 .
因为 ,
所以此时无解.
②当 ,即 时, .
由﹣ ﹣ =﹣ ,得k=0∈[﹣3 ,3 ].
③当﹣ ,即k<﹣3 时,
g(x)min=h( )=﹣k2+ k+ ,
由﹣k2+ k+ =﹣ ,得k2﹣ k﹣3=0,
所以k= .
因为k ,所以此时无解.
综上所述,当k=0时,g(x)的最小值为﹣ .
【解析】(1)由已知利用平面向量的坐标运算可得 =(sinx﹣2cosx,sinx),利用三角函数恒等变换的应用可得| |2= cos(2x+φ)+3,其中,tanφ=2,又x∈[0, ],可求 ,利用余弦函数的单调性即可得解| + |的取值范围;(2)利用平面向量数量积的运算可得g(x)=﹣3sinxcosx+k(sinx﹣cosx)﹣k2 , 令t=sinx﹣cosx= sin(x﹣ ),则g(x)可化为 ,对称轴 .利用二次函数的图象和性质分类讨论即可得解.
【题目】2016年10月,继微信支付对提现转账收费后,支付宝也开始对提现转账收费,随着这两大目前用户使用粘度最高的第三方支付开始收费,业内人士分析,部分对价格敏感的用户或将回流至传统银行体系,某调查机构对此进行调查,并从参与调查的数万名支付宝用户中随机选取200人,把这200人分为3类:认为使用支付宝方便,仍使用支付宝提现转账的用户称为“类用户”;根据提现转账的多少确定是否使用支付宝的用户称为“类用户”;提前将支付宝账户内的资金全部提现,以后转账全部通过银行的用户称为“类用户”,各类用户的人数如图所示:
同时把这200人按年龄分为青年人组与中老年人组,制成如图所示的列联表:
类用户 | 非类用户 | 合计 | |
青年 | 20 | ||
中老年 | 40 | ||
合计 | 200 |
(Ⅰ)完成列联表并判断是否有99.5%的把握认为“类用户与年龄有关”;
(Ⅱ)从这200人中按类用户、类用户、类用户进行分层抽样,从中抽取10人,再从这10人中随机抽取4人,求在这4人中类用户、类用户、类用户均存在的概率;
(Ⅲ)把频率作为概率,从支付宝所有用户(人数很多)中随机抽取3人,用表示所选3人中类用户的人数,求的分布列与期望.
附:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)
【题目】生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标 | |||||
元件甲 | 8 | 12 | 40 | 32 | 8 |
元件乙 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计元件甲、乙为正品的概率;
(2)生产一件元件甲,若是正品可盈利40元,若是次品则亏损5元,生产一件元件乙,若是正品可盈利50元,若是次品则亏损10元.在(1)的前提下:
(i)记为生产1件甲和1件乙所得的总利润,求随机变量的分布列和数学期望;
(ii)求生产5件元件乙所获得的利润不少于140元的概率.
【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程 = x+ ,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间? 参考公式:回归直线 =bx+a,其中b= = ,a= ﹣b .