题目内容
命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,q:函数f(x)=(3-2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.分析:由题意分别求出p为真,q为真时,a的取值范围,根据p或q为真,p且q为假,就是一真一假,求出a的范围即可.
解答:解:设g(x)=x2+2ax+4,
由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,
所以函数g(x)的图象开口向上且与x轴没有交点,
故△=4a2-16<0,∴-2<a<2.
又∵函数f(x)=(3-2a)x是增函数,
∴3-2a>1,∴a<1.
又由于p或q为真,p且q为假,可知p和q一真一假.
(1)若P真q假,则
∴1≤a<2;
(6)若p假q真,则
∴a≤-2;
综上可知,所求实数a的取值范围为1≤a<2,或a≤-2.
由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,
所以函数g(x)的图象开口向上且与x轴没有交点,
故△=4a2-16<0,∴-2<a<2.
又∵函数f(x)=(3-2a)x是增函数,
∴3-2a>1,∴a<1.
又由于p或q为真,p且q为假,可知p和q一真一假.
(1)若P真q假,则
|
(6)若p假q真,则
|
综上可知,所求实数a的取值范围为1≤a<2,或a≤-2.
点评:本题考查一元二次不等式的解法,四种命题的真假关系,指数函数的单调性与特殊点,考查计算能力,是基础题.
练习册系列答案
相关题目