题目内容
设an是(3-
)n的展开式中x项的系数(n=2、3、4、…),则
(
+
+…+
)=______.
x |
lim |
n→∞ |
32 |
a2 |
33 |
a3 |
3n |
an |
展开式的通项为 Tr+1=(-1)r3n-r
x
令
=1得r=2
∴an=3n-2Cn2.
=
=9×
=
=18×(
-
),
∴
(
+
+
+…+
)
=
{18×[(1-
) +(
-
)+(
-
)+…+(
-
)]}
=
[18×(1-
)]
=18.
故答案为:18.
C | rn |
r |
2 |
令
r |
2 |
∴an=3n-2Cn2.
3n |
an |
3n | ||
|
2 |
n(n-1) |
18 |
n(n-1) |
1 |
n-1 |
1 |
n |
∴
lim |
n→∞ |
32 |
a2 |
33 |
a3 |
34 |
a4 |
3n |
an |
=
lim |
n→∞ |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n-1 |
1 |
n |
=
lim |
n→∞ |
1 |
n |
=18.
故答案为:18.
练习册系列答案
相关题目