题目内容

数列{an}的前n项和Sn=n2+1是an=2n-1成立的


  1. A.
    充分但不必要条件
  2. B.
    必要但不充分条件
  3. C.
    充要条件
  4. D.
    既不充分又不必要条件
D
分析:先根据关系式:an=,进行求解数列{an}的通项公式an,注意验证n=1时是否成立.最后看求出的通项公式与an=2n-1谁能推出谁即可.
解答:由题意知,当n=1时,a1=s1=1+1=2,
当n≥2时,an=sn-sn-1=(n2+1)-[(n-1)2+1)]=2n-1,
经验证当n=1时不符合上式,
∴an=
an=成立不能推出an=2n-1成立;
反之,an=2n-1成立也不能推出an=
故选D.
点评:本题考查了必要条件、充分条件与充要条件的判断、数列通项公式和前n项和公式之间的关系式,即an=,注意验证n=1时是否成立,这是容易忽视的地方.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网