题目内容
【题目】已知f(x)=x5 +bx﹣8,且f(﹣2)=10,则f(2)=( )
A.﹣26
B.﹣18
C.﹣10
D.10
【答案】A
【解析】解:设f(x)=x5 +bx﹣8=g(x)﹣8,∴g(x)为奇函数,
由f(﹣2)=g(﹣2)﹣8=10,可得g(﹣2)=﹣g(2)=18,故g(2)=﹣18.
则f(2)=g(2)﹣8=﹣18﹣8=﹣26,
所以答案是:A.
【考点精析】关于本题考查的函数奇偶性的性质,需要了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能得出正确答案.
练习册系列答案
相关题目
【题目】某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )
甲 | 乙 | 原料限额 | |
A(吨) | 3 | 2 | 12 |
B(吨) | 1 | 2 | 8 |
A.12万元
B.16万元
C.17万元
D.18万元