题目内容
已知数列{an}和{bn}的通项公式分别为an=3n+6,bn=2n+7(n∈N*).将集合{x|x=an,n∈N*}∪{x|x=bn,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,cn,…(1)写出c1,c2,c3,c4;
(2)求证:在数列{cn}中,但不在数列{bn}中的项恰为a2,a4,…,a2n,…;
(3)求数列{cn}的通项公式.
分析:(1)利用两个数列的通项公式求出前3项,按从小到大挑出4项.
(2)对于数列{an},对n从奇数与偶数进行分类讨论,判断是否能写成2n+7的形式.
(3)对{an}中的n从从奇数与偶数进行分类讨论,对{bn}中的n从被3除的情况分类讨论,判断项的大小,求出数列的通项.
(2)对于数列{an},对n从奇数与偶数进行分类讨论,判断是否能写成2n+7的形式.
(3)对{an}中的n从从奇数与偶数进行分类讨论,对{bn}中的n从被3除的情况分类讨论,判断项的大小,求出数列的通项.
解答:解:(1)a1=3×1+6=9; a2=3×2+6=12 a3=3×3+6=15
b1=2×1+7=9 b2=2×2+7=11 b3=2×3+7=13
∴c1=9;c2=11;c3=12;c4=13
(2)解对于an=3n+6,
当n为奇数时,设为n=2k+1
则3n+6=2(3k+1)+7∈{bn}
当n为偶数时,设n=2k则3n+6=6k-1+7不属于{bn}
∴在数列{cn}中,但不在数列{bn}中的项恰为a2,a4,…,a2n,…;
(3)b3k-2=2(3k-2)+7=a2k-1
b3k-1=6k+5
a2k=6k+6
b3k=6k+7
∵6k+3<6k+5<6k+6<6k+7
∴当k=1时,依次有b1=a1=c1,b2=c2,a2=c3,b3=c4…
∴cn=
b1=2×1+7=9 b2=2×2+7=11 b3=2×3+7=13
∴c1=9;c2=11;c3=12;c4=13
(2)解对于an=3n+6,
当n为奇数时,设为n=2k+1
则3n+6=2(3k+1)+7∈{bn}
当n为偶数时,设n=2k则3n+6=6k-1+7不属于{bn}
∴在数列{cn}中,但不在数列{bn}中的项恰为a2,a4,…,a2n,…;
(3)b3k-2=2(3k-2)+7=a2k-1
b3k-1=6k+5
a2k=6k+6
b3k=6k+7
∵6k+3<6k+5<6k+6<6k+7
∴当k=1时,依次有b1=a1=c1,b2=c2,a2=c3,b3=c4…
∴cn=
|
点评:本题考查利用数列的通项公式求数列的项、考查判断某项是否属于一个数列是看它是否能写出通项形式、考查分类讨论的数学数学方法.
练习册系列答案
相关题目